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Abstract Direct Monte Carlo (MC) simulation is a pow-

erful probabilistic safety assessment method for accounting

dynamics of the system. But it is not efficient at simulating

rare events. A biasing transition rate method based on

direct MC simulation is proposed to solve the problem in

this paper. This method biases transition rates of the

components by adding virtual components to them in series

to increase the occurrence probability of the rare event,

hence the decrease in the variance of MC estimator. Sev-

eral cases are used to benchmark this method. The results

show that the method is effective at modeling system

failure and is more efficient at collecting evidence of rare

events than the direct MC simulation. The performance is

greatly improved by the biasing transition rate method.

Keywords Direct Monte Carlo simulation � Probabilistic
safety assessment � Biasing transition rate method

1 Introduction

Probabilistic safety assessment (PSA) is performed by

regulatory bodies to check whether the designs of

nuclear power plants comply with regulatory require-

ments and by industry for identifying key vulnerabilities

[1–4]. Traditional PSA methods, i.e., fault trees (FTs)

and event trees (ETs) have critical limitations in practice,

and the results may differ widely from real values due to

imprecise descriptions of component aging and mainte-

nance and binary modeling of component behavior (only

faulty/safe states are considered) and the neglect of

dynamics of the system (i.e., effect of the order and

timing of failure events on the accident progression)

[2, 5, 6]. In the PSA analysis of some advanced nuclear

systems, such as the China Lead-based Research Reactor

(CLEAR) [7], the fusion-driven subcritical system [8]

and the International Thermonuclear Experimental

Reactor (ITER) [9], high accuracy is required and such

factors cannot be neglected.

Monte Carlo (MC) simulation is a popular dynamic

method developed to overcome these limitations,

[5, 10–12], but it is not efficient at simulating rare events in

a complex system [13]. Although sampling algorithms of

antithetic variable sampling [14], dagger sampling [15],

and stratified sampling [16] can be applied to MC simu-

lation to reduce the estimate error and the computational

cost, the results are still unsatisfactory.

Biasing techniques can solve these problems effectively

by forcing the events of interest to occur more frequently in

the MC simulation. Some biasing techniques, such as

importance sampling [17–20] and multi-canonical Monte

Carlo (MMC) [21, 22], can reduce the estimate error and

the computational cost.
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To improve the simulation efficiency, in this paper we

propose a new biasing method, the biasing transition rate

method. Its idea is to bias transition rates of the compo-

nents by adding virtual components to them in series to

increase the probability of occurrence of the rare event.

The performance is compared to that of the sole use of

direct MC method.

2 The method

2.1 Assumptions

The biasing transition rate method is based on the fol-

lowing assumptions:

1. The system consists of l components, 1, …, l;

2. The components’ failure time and repair time follow

an exponential distribution or a Weibull distribution, or

linear aging based on these two distributions can be

considered;

3. Every system state is possible at any time;

4. The system is s-coherent, and each of its working

components is monotonously beneficial to the system;

and

5. The unexpected event is a rare event, and 0\Pu\ 1/

2 is the probability of the unexpected event.

2.2 Biasing transition rate method

Let us consider a simple case in which a component

transition occurs with a low transition rate k. The idea of

biasing transition rate is to add a virtual component with a

transition rate nk to the component in series, so that tran-

sition rate of the integration of the real component and

virtual component increases, and with Monte Carlo sam-

pling it is easier to achieve the transition within the mission

time of Tm in each trial. The sequence branches into two at

the transition time Tt of the integration: In the first branch,

the real component changes its state (i.e., from safe to

faulty) and the probability (weight) of this sequence equals

to the product of the contribution rate of the real compo-

nent (1/(n ? 1)) and the probability of the mother sequence

Pm; and the second branch keeps the original state, and the

probability is the product of the contribution rate of the

virtual component (n/(n ? 1)) and the probability of the

mother sequence. The sequences are simulated continu-

ously until the absorbing state, or Tm, is reached. The

transition of the integration occurs with much greater

probability in each trial. Figure 1 shows schematics of this

method of component simulation. The red dash lines

denote the sequences contributed by the real component,

and the probability of each sequence is shown on the right.

The flowchart of this method is shown in Fig. 2. In a

multi-component system simulation, the probability that

the rare event occurs can be significantly increased by

biasing the transition rates of some selected components.

The probability (weight) of the jth sequence generated in

the ith trial at mission time Tm, can be expressed as

pij ¼
Pqij

s¼1 h sð Þ; qij � 1

0; qij ¼ 0

�

; ð1Þ

where qij is the number of branch points in the jth sequence

generated in ith trial, and

Fig. 1 (Color online) Schematics of biasing transition rate simulation

for a component

Fig. 2 Flowchart of the biasing transition rate method
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where n is the biasing factor, a nonnegative number. A

greater n means a greater number of branches created and

longer time of computation. Given the increase in com-

putational cost, it is suggested that the sum of the failure

probabilities of all the biased components with the biased

rates in the mission time lies below 0.1.

Four transition rates are considered in this paper:

1. An exponential distribution for the component transi-

tion (k = k0, k0 is the design transition rate, a constant)
2. A Weibull distribution for the component transition

(k = ak0t
a-1)

3. A linear aging model based on an exponential distri-

bution (k = k0 ? k t, k is the aging factor)

4. A linear aging model based on a Weibull distribution

(k = ak0 ta-1 ? k t, a is the parameter factor in the

Weibull distribution)

As an example, assuming that the transition time of a

component follows an exponential distribution with failure

rate k, its probability of failure before time t can be

expressed as

F ¼ 1� e�kt: ð3Þ

Assuming that the failure rate of the added virtual

component is nk, taking the two components as an inte-

gration, the probability of the integration failing before

time t is equal to

F ¼ 1� e� nþ1ð Þkt: ð4Þ

The mean time to transition is reduced from 1/k to

1/[(n ? 1)k].
The biasing parameters for the four transition rates are

given in Table 1.

To state advantages of this method, the estimator vari-

ation is theoretically analyzed in Sect. 2.3. Some

parameters to evaluate performance of this method, such as

the root mean square deviation (RMSD), the efficiency in

collecting evidence of system failure, and the figure of

merit, are analyzed in benchmark cases in Sect. 3.

2.3 Estimator based on the biasing transition rate

method

Let zij be the jth sequence generated in the ith trial of the

biasing transition rate simulation. The failure probability of

the system Q can be estimated by the estimator Qb based

on the biasing transition rate method,

Qb ¼
1

N

XN

i¼1

XMi

j¼1

w zij
� �

; ð5Þ

where N is the number of MC cycles; Mi is the sequence

number of the ith trial; and w is a discrete function

expressing the unexpected event, which can be expressed

as Eq. (6) for the biasing transition rate method,

w zij
� �

¼ pij; if the unexpected event occurs

0; otherwise

�

: ð6Þ

The variation of Qb can be expressed by

Var Qbf g ¼ Var
1

N

XN

i¼1

XMi

j¼1

w zij
� �

 !

¼ 1

N2

XN

i¼1

Var
XMi

j¼1

w zij
� �

 ! !

: ð7Þ

The failure probability of the system Q can be estimated

by the direct MC estimator Qd,

Qd ¼
1

N

XN

i¼1

w cið Þ; ð8Þ

Table 1 Parameter settings for

the biasing transition rate

method

Cases Real component Virtual component Integration

1 k0 nk0 (n ? 1) k0
2 ak0 t

a-1 nak0 t
a-1 (n ? 1)ak0 t

a-1

3 k0 ? k t n (k0 ? k t) (n ? 1) (k0 ? k t)

4 ak0 t
a-1 ? k t n (ak0 t

a-1 ? k t) (n ? 1) (ak0 t
a-1 ? k t)

For Cases 1–4, the contribution rate h is 1/(n ? 1) and n/(n ? 1) for the real and virtual components,

respectively

h sð Þ ¼

1

nþ 1ð Þ ; the s-th transition caused by the real component

n

nþ 1ð Þ ; otherwise

8
><

>:
; ð2Þ
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where ci donates the sequence in the ith trial. The variance

of the estimator Var Qdf g is

Var Qdf g ¼ Var
XN

i¼1

w cið Þ ¼ 1

N2

XN

i¼1

Var w cið Þð Þ
 !

: ð9Þ

For the direct MC method, the discrete function

expressing the unexpected event can be expressed as

w cið Þ ¼ 1; if the unexpected event occurs

0; otherwise

�

: ð10Þ

Since E(
PMi

j¼1 w zij
� �

) = E(w(ci)), and 0\Pu\ 1/2, we

have

Var
XMi

j¼1

w zij
� �

 !

�Var w cið Þð Þ; ð11Þ

and

Var Qbf g ¼ 1

N2

XN

i¼1

Var
XMi

j¼1

w zij
� �

 ! !

� 1

N2

XN

i¼1

Varðw cið ÞÞ
 !

¼ Var Qdf g:
ð12Þ

This proves that the biasing transition rate method can

decrease the variance of the MC estimator.

3 Benchmark cases

3.1 Description of the system

To illustrate performance of the method, a system con-

sisting of three components, as shown in Fig. 3, is used to

benchmark the biasing transition rate method. The fol-

lowing four cases are considered:

1. An exponential distribution for the component life;

2. A Weibull distribution for the component life;

3. Linear aging based on an exponential distribution; and

4. An exponential distribution for the component life and

for the component repair time.

The mission time is Tm = 1000 h. For all the cases, the

design failure rates are k1 = k2 = 10-4 and k3 = 10-5; the

biasing factor is n = 9; and number of MC cycles is

N = 1000. For Case 2, the parameter factors are

a1 = a2 = a3 = 1.1. For Case 3, the aging factors are

k1 = k2 = 10-8 and k3 = 10-9. For Case 4, design repair

rates are u1 = u2 = 10-3 and u3 = 0.

3.2 Results and discussion

Figure 4 shows the results of the biasing transition rate

simulation and the direct MC simulation, compared with

the reference results (i.e., the results using the minimal cut

set method and the result of a direct MC simulation with a

huge sampling size). The results of the two kinds of models

are almost identical, which shows that the biasing transition

rate method is effective at estimating reliability in the four

cases. Figure 4 also shows that the estimates provided by

the biasing transition rate method are smoother than those

provided by the direct MC simulation, because the former

can collect more evidences of system failure than the latter

in the same number of MC cycles.

Table 2 lists the RMSDs and the efficiency for collect-

ing evidence of the failure events for the two methods

applied to the four cases. RMSD is a measure of the error

between the estimated and reference values. To compute

the RMSD for the two methods, the results of minimal cut

set models (Cases 1–3) and the result of direct MC models

with a huge number of MC cycles (Case 4) are set as the

reference values. The results show that the RMSD value of

the biasing transition rate model is much smaller than that

of the direct MC model, hence the increased closeness to

the real value. This matches the proof in Sect. 2.3: The

biasing transition rate method is much more efficient at

collecting evidence of system failure, a rare event, than the

direct MC method, because the probability increases

greatly for the transition of the integrated real and virtual

components, and so does the probability that the system

failure occurs in each trial in the biasing transition rate

simulation. For example, in Case 1, the RMSD values of

the direct MC model and the biasing transition rate model

are 0.00647 and 0.00034, respectively, and the expected

times to ‘system failure’ are 0.2031 and 0.0064,

respectively.

To quantify the efficiency of both methods in these

cases, the figure of merit (FOM), a quantity to characterize

the performance of a method, is introduced [23]:

FOM ¼ 1= r2T
� �

; ð13Þ

where T is the computational cost and r2 is average of the

squared deviation between the MC and the analytical val-

ues. The greater the FOM value is, the better the method.

The figures of merit of both methods for the four cases are

listed in Table 3. It can be seen that the performance is

improved by the biasing transition rate method.Fig. 3 Diagram of the benchmark system
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4 Conclusion

A biasing transition rate method for safety assessment of

a complex system by MC simulation is proposed. The

estimator of this method is stated, and variance of the MC

estimator is decreased. Four cases are used to benchmark

this method. It is an effective method for modeling system

failure, being more efficient at collecting evidence of rare

events than the direct MC method in the same number of

MC cycles. This method may be applied to the rare event

simulation of a complex system to save computational cost.

When applying an MC simulation with a deterministic

code in a safety assessment of a nuclear system, its per-

formance advantage may be more prominent. The perfor-

mance can be further improved by coupling this method

with another efficient method, the Monte Carlo dynamic

event tree (MCDET).

Fig. 4 (Color online) Cumulative probabilities for system failure at Tm = 1000 h, N = 1000, and different distributions of the component

failure time, repair time, and linear aging

Table 2 RMSD and efficiency of collecting evidence of failure events for the direct MC and biasing transition models

Case no. Computational cost/s Number of evidence RMSD Expected time to ‘system failure’/s

DMC BTR DMC BTR DMC BTR DMC BTR

1 5.6865 7.7354 28 1213 0.00647 0.00034 0.2031 0.0064

2 6.1644 12.6543 44 4640 0.00482 0.00204 0.1401 0.0027

3 4.6761 7.0110 11 1315 0.00421 0.00057 0.4251 0.0053

4 4.2993 8.5845 12 1042 0.00264 0.00053 0.3583 0.0082

DMC direct MC, BTR biasing transition rate model

Table 3 FOMs (9104) for MC

and BTR methods
Case no. MC BTR

1 9.50 464

2 0.70 1.89

3 1.20 41.4

4 3.35 40.7
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