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Abstract Fluctuations of conserved quantities, such as

baryon, electric charge, and strangeness number, are sensi-

tive observables in relativistic heavy-ion collisions to probe

the QCD phase transition and search for the QCD critical

point. In this paper, we review the experimental measure-

ments of the cumulants (up to fourth order) of event-by-

event net-proton (proxy for net-baryon), net-charge and net-

kaon (proxy for net-strangeness) multiplicity distributions

in Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 7:7; 11:5; 14:5; 19:6; 27;

39; 62:4; 200 GeV from the first phase of beam energy scan

program at the relativistic heavy-ion collider (RHIC). We

also summarize the data analysis methods of suppressing the

volume fluctuations, auto-correlations, and the unified

description of efficiency correction and error estimation.

Based on theoretical and model calculations, we will discuss

the characteristic signatures of critical point as well as

backgrounds for the fluctuation observables in heavy-ion

collisions. The physics implications and the future second

phase of the beam energy scan (2019–2020) at RHIC will

also be discussed.

Keywords QCD critical point � Fluctuations and

correlations � Relativistic heavy-ion collisions � Conserved

charges

1 Introduction

A major uncertainty in our understanding of strongly

interacting nuclear matter is the so-called Quantum Chro-

modynamics (QCD) phase structure and the possible exis-

tence of a critical point in the QCD phase diagram, located at

high temperature and nonzero baryon chemical poten-

tial [1]. It is one of the main goals of the beam energy scan

(BES) program at the relativistic heavy-ion collider

(RHIC) [2, 3], which is located at the Brookhaven National

Laboratory (BNL), USA. This also serves as a main moti-

vation for the research programs at the future accelerator

facilities FAIR in Darmstadt and NICA in Dubna. As shown

in Fig. 1, the conjectured QCD phase diagram, it can be

displayed in the two dimensional phase diagram (tempera-

ture, T vs. baryon chemical potential, lB). Finite tempera-

ture lattice QCD calculations have shown that at zero lB
(lB ¼ 0) region, it is a crossover transition between hadro-

nic phase and quark–gluon plasma (QGP) phase [4]. At

large lB region, the QCD-based models predicted that the

phase transition is of the first order [5, 6] and there should

exist a so-called QCD Critical Point (CP) as the endpoint of

the first-order phase boundary [7, 8]. Due to sign problem at

finite lB region, it is difficult to precisely determine the

location of the CP or even its existence [9]. Experimental

confirmation of the existence of the CP will be an excellent
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verification of QCD theory in the non-perturbative region

and a milestone of exploring the QCD phase structure.

Please note that the first-order phase boundary, the critical

point and the smooth crossover are closely related thermo-

dynamically. For example, if the smooth crossover and the

first-order phase boundary exist, there must be a critical

point at the end of the first-order line. To some extent, the

burden is on the experimental side who should determine the

location of the QCD critical point or the first-order phase

boundary. To access a broad region of the QCD phase dia-

gram, experimentalists vary the temperature (T) and baryon

chemical potential (lB) of the nuclear matter created in

heavy-ion collisions [2] by tuning the colliding energies of

two nuclei. It is expected that fluctuations of conserved

charges yield information on the phase structure of QCD

matter [10–16], provided the freeze-out is sufficiently close

to the phase boundary. These conserved quantities have

been long time predicted to be sensitive to the correlation

length [16–20] and directly connected to the susceptibilities

computed in the first principle lattice QCD calcula-

tions [1, 21–29]. Consequently, the analysis of event-by-

event fluctuations of the net-baryon number (B), electric

charge (Q), and strangeness (S), in particular their higher-

order cumulants, play a central role in the efforts to reveal

the thermodynamics of the matter created in heavy-ion

collisions at RHIC and LHC. Thus, it can serve as a powerful

observables to study the phase transition and search for the

CP in heavy-ion collisions [17, 30].

During the first phase of the RHIC BES (2010–2014),

the STAR experiment has measured the cumulants (up to

the fourth order) of net-proton (proton minus anti-proton

number, proxy of net-baryon [20]), net-charge, and net-

kaon multiplicity distributions in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. In

those energies, the data of 14.5 GeV is taken in the year

2014, 19.6, 27 GeV are taken in the year 2011, and the

other energies are collected in the years 2010. In this paper,

we will review the experimental results on fluctuations of

conserved quantities from the BES data measured by the

STAR and PHENIX experiments. The corresponding

physics implications will also be discussed.

2 The QCD critical point

A critical point is the end point of the first-order phase

transition boundary in the phase diagram, at which the

phase transition is of the second order and one cannot

distinguish difference between the two phases. For exam-

ple, in the liquid–gas phase transition of water, one cannot

distinguish vapor and liquid of the water when the tem-

perature is above the critical temperature Tc ð373:946 �CÞ.
In equilibrated matter in the vicinity of a critical point,

various thermodynamic quantities exhibit large critical

fluctuations, which in laboratory systems give rise to, e.g.,

critical opalescence. The critical phenomena (critical

opalescence) is discovered by Baron Charles Cagniard de

la Tour in 1822 in the study of the liquid–gas phase tran-

sition for the mixtures of alcohol and water [42]. The term

‘‘critical point’’ is firstly named by Thomas Andrews in

1869 [31] when he studied the liquid–gas transition in

carbon dioxide (CO2), the critical temperature is about

31 �C. When the thermodynamic condition of system is

approaching the critical point, the correlation length of

system will diverge. The divergency of the correlation

length (n) is one of the most important characteristic fea-

ture of the critical point, and it is also related to the

divergency of the specific heat (Cv), susceptibility (v),

compressibility (j) and critical opalescence. In Fig. 2, it

demonstrates the well-known critical opalescence, the

visible cloudy phenomena near the critical point of liquid–

gas phase transition. When the lights are passing through

the CO2 near the critical point, the light will undergo large

scattering due to its wavelength is comparable to the length

scale (correlation length) of the density fluctuations in the

phase transition of the liquid–gas system.

Those critical behaviors can be described by power law

divergence with a set of critical exponents. The critical

exponents of the critical point for various systems with

same symmetry and dimension belong to the same uni-

versality class. Due to self-similarity and scaling properties

of the critical point, those critical exponents can be pre-

cisely calculated by the renormalization group theory [43].

Fig. 1 (Color online) The conjectured QCD phase diagram [1]

temperature T as a function of baryon chemical potential (lB). The

red line is the empirical chemical freeze-out line determined by the

experimental data of heavy-ion collisions. The solid circle is located

at T ¼ 0 and lB ¼ 938 MeV, the rest mass of nucleon. The solid

black line is the speculated first-order phase boundary, and the end

point (solid square) of this boundary is the QCD critical point. At

lB � 0, the transition from hadronic gas to quark gluon plasma (QGP)

becomes a smooth crossover, which is represented by the dashed line
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Another important feature of the critical point is the so-

called finite size effect, which is originated from that the

correlation length is comparable with the size of system

and the system size limits the growing of the correlation

length. This leads to an observable effects when one varies

the system size.

The phase diagram of water is shown in Fig. 3 [32]. It

can be found that the phase structure of water are very rich,

which is the emergent properties of quantum electrody-

namics (QED). Due to the easily realized phase transition

conditions, the water phase diagram is precisely known. On

the other hand, the phase structure of the hot and dense

nuclear matter, which is governed by the strong force

described by the QCD theory, is rarely known to us. Thus,

it is very important to explore the QCD phase structure and

search for the QCD critical point theoretically and exper-

imentally. From theoretical side, it is still very difficult to

precisely determine the location of the critical point due to

its non-perturbative feature. The QCD-based models, such

as NJL, PNJL, PQM, have given many results of the

location of the QCD critical point, which are summarized

in the reference [44]. The locations of the QCD critical

point obtained from the first principle lattice QCD and

Dyson–Schwinger equation (DSE) calculations are sum-

marized in Table 1. One can see that the baryon chemical

potential (lEB) of the QCD critical point are ranging from

266 to 504 MeV, the critical temperature is from 115 to

162 MeV. There still has big difference between the results

from different methods and groups. Experimentally, we

aim to search for the critical point with the strongly

interacting QCD matter created in the relativistic heavy-ion

collisions. It is very challenging due to the following rea-

sons: (1) the hot dense medium created in the heavy-ion

collisions is not static but expanding rapidly. Thus, the

correlation length of the system is not only limited by the

size of the system, but also by the finite expansion time and

it is predicted to be 2–3 fm by assuming the existence of a

critical point [45]. One has to consider finite time and finite

size effects in order to determine the exact location of the

critical point. (2) What are the sensitive observables and

what is the smoking gun signature of the QCD critical point

in heavy-ion collisions. (3) One has to understand the non-

critical contributions to the experimental observables and

the signal-to-background ratio should not be too small. (4)

One needs that the freeze-out thermodynamic conditions of

the QCD matter created in heavy-ion collisions should be

close enough to the phase boundary that the phase transi-

tion signals were not washed out after the expansion.

Due to the difficulties and challenges discussed above,

we should set up good strategies to search for the QCD

critical point. Firstly, we need to have good quality

experimental data of heavy-ion collisions at a wide range

of energies. This allows us to scan a broad region of the

QCD phase diagram. Then, we use sensitive observables to

find the smoking gun signatures and confirm the existence

Fig. 2 (Color online) The critical opalescence near the critical point

of CO2 [31]

Fig. 3 (Color online) The phase diagram of water [32]

Table 1 Locations of the QCD

critical point from lattice QCD

and DSE, respectively

Lattice DSE

(lEB;T
E) MeV I [8] II [33, 34] III [35–38] I [39] II [40] III [41]

(360,162) (285,155) lEB=T
E[2 (372,129) (405,127) (504,115)
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of the QCD critical point before determining its location. In

order to extract critical signature and understand the

background contributions, careful modeling of the critical

phenomena and dynamical evolution of the heavy-ion

collisions are needed. It requires close collaboration

between theorists and experimentalists. If the QCD critical

point is given and hidden in nature, we will finally discover

it and put a permanent landmark in the phase diagram of

the strongly interacting nuclear matter.

3 Fluctuations and correlations

Fluctuations and correlations have long been consid-

ered to be sensitive observables in heavy-ion collisions to

explore the phase structure of the strongly interacting

QCD matter [13, 46, 47]. They have a well-defined

physical interpretation for a system in thermal equilibrium

and can provide essential information about the effective

degrees of freedom. The well-known phenomenon of

critical opalescence is a result of fluctuations at all length

scales due to a second-order phase transition. The most

efficient way to study the fluctuations of a system created

in a heavy-ion collision is to measure an observable on

the event-by-event basis and the fluctuations are studied

over the ensemble of the events. In strong interaction, the

net number of charges in a closed system is conserved.

The magnitude of these fluctuations in a grand-canonical

ensemble at finite temperature is distinctly different in the

hadronic and quark gluon plasma phases. Event-by-event

fluctuation and correlation of the conserved charges is one

of the observables to study the properties of the QCD

medium created in relativistic heavy-ion collisions.

Although these observables are hadronic ones, it is

believed that they can reflect the thermal property in the

early stage. A system in thermal equilibrium (for a grand-

canonical ensemble) can be characterized by its dimen-

sionless pressure, which is the logarithm of the QCD

partition function [21]

P

T4
¼ 1

VT3
ln ½ZðV; T ; lB; lQ; lSÞ�; ð1Þ

where V and T are the system volume and temperature. The

lB, lQ, and lS are baryon, charge, and strangeness chem-

ical potential, respectively. The equation of state is very

different for thermodynamical system with different degree

of freedom and interactions. The susceptibility of the

conserved charges (B, Q, S) is defined as the derivative of

the dimensionless pressure with respected to the reduced

chemical potential.

vBQSijk ¼ oðiþjþkÞ½P=T4�
ol̂iBol̂

j
Qol̂

k
S

ð2Þ

where l̂q ¼ lq=T; q ¼ B;Q; S. The cumulants of these

conserved quantities (B, Q, S) distributions are connected

to the corresponding susceptibilities by

CBQS
ijk ¼

oðiþjþkÞ ln½ZðV ; T ; lB; lQ; lSÞ�
ol̂iBol̂

j
Qol̂

k
S

¼ VT3vBQSijk ðT ; lB; lQ; lSÞ;

ð3Þ

where the CBQS
ijk denotes both diagonal and off-diagonal

cumulants of conserved quantities (B, Q, S)

(i; j; k ¼ 1; 2; 3; 4. . .n). Experimentally, we construct the

ratios of cumulants as the experimental observables, which

cancel the volume dependent and can be directly compared

with the ratios of susceptibilities from theoretical calcula-

tions. To obtain the ratio of cumulants, we firstly introduce

various-order cumulants up to sixth order and their rela-

tions to the central moments as

Mq ¼ hNqi ¼ VT3vq1; rq2 ¼ C
q
2 ¼ hðdNqÞ2i ¼ VT3vq2;

ð4Þ

C
q
3 ¼ hðdNqÞ3i ¼ VT3vq3; C

q
4 ¼ hðdNqÞ4i

� 3hðdNqÞ2i2 ¼ VT3vq4;
ð5Þ

C
q
5 ¼ hðdNqÞ5i � 10hðdNqÞ3ihðdNqÞ2i ¼ VT3vq5; ð6Þ

C
q
6 ¼ hðdNqÞ6i � 15hðdNqÞ4ihðdNqÞ2i � 10hðdNqÞ3i2

þ 30hðdNqÞ2i3 ¼ VT3vq6;

ð7Þ

where Mq, r
q
2 are the mean and variance, respectively. The

Cq
nðn ¼ 2; 3; 4; . . .Þ are the nth-order cumulants with q ¼

B;Q; S and dNq ¼ Nq � hNqi. We didn’t consider the cor-

relations between different conserved charges.

On the other hand, we introduce two well-known

statistic quantities, the so-called skewness (S) and kurtosis

ðjÞ. In statistics, those two quantities can be used to

describe the shape of distributions and they are defined as

Sq ¼
hðdNqÞ3i

hðdNqÞ2i3=2
¼ C

q
3

rq2
� �3=2

; ð8Þ

jq ¼
hðdNqÞ4i
hðdNqÞ2i2

� 3 ¼ C
q
4

rq2
� �2

: ð9Þ

For Gaussian distribution, both of the two quantities are

equal to zero. Thus, they are widely used to quantify the

non-Gaussianity. With above definition of the mean, vari-

ance, skewness, kurtosis and various-order cumulants, we

can have the following relations:

r2
q

Mq

¼ C
q
2

Mq

¼ vq2
vq1

; Sqrq ¼
C
q
3

C
q
2

¼ vq3
vq2

; ð10Þ
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jqr
2
q ¼

C
q
4

C
q
2

¼ vq4
vq2

;
jqrq
Sq

¼ C
q
4

C
q
3

¼ vq4
vq3

: ð11Þ

Those equations connect the experimental measurements

(l.h.s.) and theoretically calculations (r.h.s.). In the fol-

lowing, we will discuss the results calculated from the

hadron resonance gas model and lattice QCD.

3.1 Hadron resonance gas model

In the Hadron Resonance Gas (HRG) model, non-in-

teracting hadrons and their resonance are the basic degree

of freedom. The interactions are encoded in the thermal

creation of hadronic resonances based on their Boltzmann

factor. The HRG can successfully describe the observed

particle abundances in heavy-ion collisions. For simplify

and discussion purpose, we use the Boltzmann approxi-

mation and the pressure can be expressed [48–50]

P

T4
¼ 1

VT3
ln ZðV ; T ; lB; lQ; lSÞ
� �

¼ 1

p2

X

i2X
gi

mi

T

� �2

K2

mi

T

� �

� cosh Bil̂B þ Qil̂Q þ Sil̂S
� �

;

ð12Þ

where gi is the degeneracy factor for hadrons of mass mi,

and l̂q �
lq
T

, with q ¼ B, S, Q denoting the net-baryon

number, net-strangeness and the net-charge, and lB, lS, lQ
are the corresponding chemical potentials, respectively.

The K2ðxÞ is the modified Bessel function and the sum-

mation is taking over all stable hadrons and resonance and

thus the contribution of anti-particles are automatically

included. The results from HRG model are usually served

as a baseline for finding the signature of phase transition

and QCD critical point in heavy-ion collisions. For net-

baryon number fluctuations, the ratios of cumulants from

HRG model are simple. With Boltzmann approximation,

the baryon number susceptibility can be expressed as

vB2n ¼
o2n½P=T4�
ol̂2n

B

¼
X

i2B
gi

mi

T

� �2

K2

mi

T

� �

� cosh l̂B þ Qil̂Q þ Sil̂S
� �

;

ð13Þ

vB2n�1 ¼ o2n�1½P=T4�
ol̂2n�1

B

¼
X

i2B
gi

mi

T

� �2

K2

mi

T

� �

� sinh l̂B þ Qil̂Q þ Sil̂S
� �

:

ð14Þ

Thus, the ratio of baryon number susceptibilities can be

easily obtained

CB
even

CB
even

¼ vBeven

vBeven

¼ 1;
CB

odd

CB
odd

¼ vBodd

vBodd

¼ 1; ð15Þ

CB
odd

CB
even

¼ vBodd

vBeven

¼ tanhðlB=TÞjlQ¼lS¼0: ð16Þ

Based on Eqs. (15) and (16), we obtain

MB

r2
B

¼ Sqrq ¼ tanhðlB=TÞjlQ¼lS¼0; ð17Þ

jBr
2
B ¼ SBr3

B

MB

¼ 1; ð18Þ

where n ¼ 1; 2; 3. . ., lB and T are the baryon chemical

potential and temperature of the thermal system. This

simple result arises from the fact that only baryons with

baryon number B ¼ 1 contribute to the various cumulants

in the HRG model. However, due to the contribution of the

multi-charge states Q ¼ 2 or S ¼ 2; 3 for net-charge and

net-strangeness fluctuations, respectively, the results of net-

charge and net-strangeness fluctuations are more compli-

cated than net-baryon number fluctuations from the HRG

model. Figure 4 shows the ratio of susceptibilities of

charge (left) and strangeness (right) from the HRG model

calculations along the chemical freeze-out curve in heavy-

ion collisions. It can be found that the susceptibilities ratios

v2=v1 or v3=v2 of charge and strangeness show strong

energy dependence, whereas the v4=v2 has small variation

with energies. Due to the contributions from the multi-

charge states Q ¼ 2 or S ¼ 2; 3, the charge and strangeness

v4=v2 deviate from unity.

3.2 Lattice QCD

Lattice QCD is a well-established non-perturbative

approach to solve the QCD theory of quarks and gluons

exactly from first principles and without any assump-

tions [51]. It can be used to study the thermodynamic prop-

erties of a strongly interacting system in thermal equilibrium.

Most importantly, lattice QCD provides a framework for

investigation of non-perturbative phenomena such as con-

finement and quark–gluon plasma formation, which are

intractable by means of analytic field theories.

Figure 5 shows the results of QCD equation of state

(the trace anomaly, the pressure and the entropy density)

from two independent groups: Hot QCD and Wuppertal–

Budapest Collaboration, which used the different actions.

The results from the two groups got good agreement with

each other. On the other hand, the pressure (P=T4) at

finite lB region can be calculated by using the Taylor

expansion techniques. By putting the lQ = lS = 0, we

can expand the pressure (P=T4) into finite lB
as [21, 38, 53]
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PðT ;lBÞ�PðT ;0Þ
T4

¼ 1

2
vB2 ðTÞ

lB
T

� �2

� 1þ 1

12

vB4 ðTÞ
vB2 ðTÞ

lB
T

� �2

þ 1

360

vB6 ðTÞ
vB2 ðTÞ

lB
T

� �4
	 


þOðl8
BÞ:

ð19Þ

Due to the symmetry of QCD, the odd terms are vanishing

and only even terms are left. It shows various-order cor-

rections to the pressure. The coefficients of leading order

(LO), next leading order (NLO) and next next leading order

(NNLO) are related to the baryon number susceptibilities

vB2 , vB4=v
B
2 and vB6=v

B
2 , respectively. Those susceptibilities

are defined in Eq. (2) and can be evaluated at

lB ¼ lQ ¼ lS ¼ 0. Figures 6 and 7 left show the prelimi-

nary BNL-Bielefeld-CCNU results of baryon number sus-

ceptibility (vB2 ) and the susceptibilities ratios (vB4=v
B
2 and

vB6=v
B
2 ) as a function of temperature computed from lattice

QCD at vanishing chemical potentials. It can be found that

at low temperature, the results from lattice QCD are con-

sistent with the results from HRG, whereas it shows large

discrepancies between those two at high temperature. The

ratio vB6=v
B
2 shows negative values near and above transi-

tion temperature and positive values around unity at low

temperatures, but there are still large uncertainties and

more statistics are needed. Figure 7 right shows the Lattice

calculation of the pressure at finite baryon density and the

effects of the correction with different orders. The cor-

rection of the NNLO term on the pressure is found to be

very small (\5%) when lB=T\2. It means the Taylor

expansion up to NNLO order is under control with

lB=T\2. The susceptibility of conserved charges

(B, Q, S) can be also computed at finite baryon density

region by using the Taylor series in terms of the baryon

chemical potential (lB) at lQ ¼ lS ¼ 0 [21, 38, 53]

vBn ðT; lBÞ ¼
X

1

k¼0

1

k!
vBnþkðTÞ

lB
T

� �k

; ð20Þ

vQn ðT; lBÞ ¼
X

1

k¼0

1

k!
vBQk;n ðTÞ

lB
T

� �k

; ð21Þ

vSnðT; lBÞ ¼
X

1

k¼0

1

k!
vBSk;nðTÞ

lB
T

� �k

: ð22Þ

In the following, we focus on discussing the next leading

order (NLO) Taylor expansion of the baryon number sus-

ceptibilities. Due to the QCD symmetry for matter and

anti-matter, the NLO Taylor expansion for the odd- and

even-order baryon number susceptibilities can be expressed

as

vB2n�1ðT; lBÞ ¼ vB2nðTÞ
lB
T

� �

þ 1

6
vB2nþ2ðTÞ

lB
T

� �3

; ð23Þ

vB2nðT ; lBÞ ¼ vB2nðTÞ þ
1

2
vB2nþ2ðTÞ

lB
T

� �2

; ð24Þ

where the vB2nðTÞ and vB2nþ2ðTÞ are the baryon number

Fig. 4 (Color online) The ratio of susceptibilities of charge (left) and strangeness (right) fluctuations as a function of colliding energy along the

parameterized freeze-out curve in heavy-ion collisions. The results are calculated from the HRG model [48]

Fig. 5 (Color online) The comparison of the HISQ/tree (Hot QCD

Collaboration) and stout (Wuppertal–Budapest Collaboration) results

for the trace anomaly, the pressure, and the entropy density in the

lattice QCD calculation at vanishing baryon chemical potential [52]

112 Page 6 of 40 X. Luo, N. Xu

123



susceptibilities evaluated at lB ¼ lQ ¼ lS ¼ 0 with

n ¼ 1; 2; 3; 4; . . .;N. We define a dimensionless quantity

Ln:

Ln ¼
1

6

vB2nþ2ðTÞ
vB2nðTÞ

lB
T

� �2

: ð25Þ

With this definition, the Taylor expansion of the odd- and

even-order susceptibility at the next leading order can be

rewritten as

vB2n�1ðT; lBÞ ¼ vB2n
lB
T

ð1 þ LnÞ; ð26Þ

vB2nðT ; lBÞ ¼ vB2nð1 þ 3LnÞ: ð27Þ

Then, we can express the baryon number susceptibilities

ratios as

vB2nðT; lBÞ
vB2n�1ðT; lBÞ

¼ T

lB
1 þ 2

1 þ 1=Ln

� �

; ð28Þ

vB2nþ1ðT; lBÞ
vB2nðT; lBÞ

¼ 6
T

lB
Ln 1 þ Lnþ1 � 3Ln

1 þ 3Ln

� �

; ð29Þ

vB2nþ2ðT; lBÞ
vB2nðT; lBÞ

¼ 6
T

lB

� �2

Ln 1 þ 3ðLnþ1 � LnÞ
1 þ 3Ln

	 


; ð30Þ

vB2nþ1ðT; lBÞ
vB2n�1ðT; lBÞ

¼ 6
T

lB

� �2

Ln 1 þ Lnþ1 � Ln

1 þ Ln

� �

: ð31Þ

If we consider Ln\\1, the r.h.s. of Eqs. (28) to (31) can

be simplified as

vB2nðT; lBÞ
vB2n�1ðT; lBÞ

¼ T

lB
; ð32Þ

vB2nþ1ðT; lBÞ
vB2nðT; lBÞ

¼ 6
T

lB
Ln 1 þ Lnþ1 � 3Lnð Þ; ð33Þ

vB2nþ2ðT; lBÞ
vB2nðT; lBÞ

¼ 6
T

lB

� �2

Ln 1 þ 3ðLnþ1 � LnÞ½ �; ð34Þ
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Fig. 6 (Color online) Lattice QCD results from BNL-Bielefeld-

CCNU collaboration [21, 38, 53]: the second-order baryon number

susceptibility (vB2 ) (left) and the fourth- to second-order baryon

number susceptibilities ratio (vB4=v
B
2 ) (right) as a function of

temperature calculated from lattice QCD at vanishing chemical

potential (lq ¼ 0; q ¼ B;Q; S)

Fig. 7 (Color online) Lattice QCD results from BNL-Bielefeld-

CCNU collaboration [21, 38, 53]: the sixth- to second-order baryon

number susceptibilities ratio (vB6=v
B
2 ) at vanishing chemical potential

(left) and the pressure as a function of temperature for different

baryon chemical potentials and precision levels (right)
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vB2nþ1ðT; lBÞ
vB2n�1ðT; lBÞ

¼ 6
T

lB

� �2

Lnð1 þ Lnþ1 � LnÞ: ð35Þ

Based on Eqs. (32), (34), and (35), we have

vB2nþ2ðT ; lBÞ
vB2nðT ; lBÞ

� vB2nþ1ðT ; lBÞ
vB2n�1ðT ; lBÞ

¼ 1

3

vB2nþ4ðTÞ
vB2nðTÞ

� vB2nþ2ðTÞ
vB2nðTÞ

� �2
" #

MB

rB2

� �2

;

ð36Þ

where we use a leading order approximation
rB

2

MB
ðT; lBÞ ¼ T

lB
. We define a temperature dependent quan-

tity rnðTÞ:

rnðTÞ ¼
1

3

vB2nþ4ðTÞ
vB2nðTÞ

�
vB2nþ2ðTÞ
vB2nðTÞ

� �2
" #

: ð37Þ

Then, deriving from Eqs. (36) and (37), we get

rnðTÞ ¼
vB2nþ2ðT ; lBÞ
vB2nðT; lBÞ

�
vB2nþ1ðT; lBÞ
vB2n�1ðT; lBÞ

� �

r2
B

MB

� �2

: ð38Þ

For the lowest order with n ¼ 1, we obtain

r2
B

MB

ðT; lBÞ ¼
T

lB
; ð39Þ

SBrBðT ; lBÞ ¼ 6
T

lB
L1 1 þ L2 � 3L1ð Þ; ð40Þ

jBr
2
BðT; lBÞ ¼ 6

T

lB

� �2

L1 1 þ 3ðL2 � L1Þ½ �; ð41Þ

SBr3
B

MB

ðT; lBÞ ¼ 6
T

lB

� �2

L1 1 þ L2 � L1ð Þ; ð42Þ

where L1 ¼ 1
6

vB
4
ðTÞ

vB
2
ðTÞ

lB
T

� �2
and L2 ¼ 1

6

vB
6
ðTÞ

vB
4
ðTÞ

lB
T

� �2
. We may find

that jBr2
B and SBr3

B=MB are closely related and their dif-

ference is

jBr
2
B �

SBr3
B

MB

¼ 12
T

lB

� �2

L1 L2 � L1ð Þ

¼ 1

3

vB6
vB2

� vB4
vB2

� �2
" #

lB
T

� �2

¼ 1

3

vB6
vB2

� vB4
vB2

� �2
" #

MB

r2
B

� �2

¼ r1ðTÞ
MB

r2
B

� �2

;

ð43Þ

where

r1ðTÞ ¼
1

3

vB6
vB2

� vB4
vB2

� �2
" #

: ð44Þ

In above Taylor expansions of the baryon number sus-

ceptibilities in lattice QCD, we always assume lQ ¼ lS ¼
0 and expand up to next to leading order. For more real-

istic, one need to consider the case lQ 6¼ lS 6¼ 0. In order

to compare with experimental data, we need additional

constrains. For example, strangeness neutrality NS ¼ 0 and

baryon to charge number ratios equals to 0.4

(NQ=NB ¼ 0:4) in Au?Au and Pb?Pb collisions. Further-

more, the self-consistent determination of the freeze-out in

QCD thermodynamics for heavy-ion collisions is needed

and makes the comparison between lattice QCD and

experimental data with more complication [37, 38].

4 Experimental observables

Event-by-event particle multiplicity fluctuations can be

characterized by the cumulants of the event-by-event

multiplicity distributions. It can be calculated as

C1 ¼ hNi;C2 ¼ hðdNÞ2i; ð45Þ

C3 ¼ hðdNÞ3i;C4 ¼ hðdNÞ4i � 3hðdNÞ2i2; ð46Þ

where N is particle or net-particle number measured on the

event-by-event bias and the hNi is average over entire

event ensemble, dN ¼ N � hNi. With the definition of

cumulants, we can also define mean (M), variance (r2),

skewness (S), and kurtosis (j) as

M ¼ C1; r
2 ¼ C2; S ¼ C3

ðC2Þ
3
2

; j ¼ C4

ðC2Þ2
: ð47Þ

In addition, the moments product jr2 and Sr can be

expressed in terms of the ratios of cumulants

jr2 ¼ C4

C2

; Sr ¼ C3

C2

; r2=M ¼ C2

C1

: ð48Þ

The ratios of cumulants are independent on system volume.

The statistical errors of those cumulants and cumulants

ratios are estimated by the Delta theorem [54, 55]. In

general, the statistical errors strongly depend on the shape

of the distributions, especially the width. For Gaussian

distributions, the statistical errors of cumulants (Cn) can be

approximated as errorðCnÞ / rn=ð
ffiffiffiffi

N
p

�nÞ, where r is the

measured width of the distribution, N represents the num-

ber of events and � is the particle detection efficiency.

Theoretically, conserved charge fluctuations are sensitive

to the correlation length (n) of system, which is about 2–

3 fm near the QCD critical point in heavy-ion collisions.

The fourth-order cumulant are proportional to seventh

power of the correlation length as C4 / n7. Experimen-

tally, the various-order cumulants of net-proton (proton

number minus anti-proton number), net-charge and net-
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kaon multiplicity distributions are measured with the data

of the beam energy scan at RHIC to search for the signature

of the QCD critical point. Since the STAR detector at

RHIC cannot measure the neutron at mid-rapidity, the net-

proton fluctuations are used to approximate the fluctuations

of net-baryons. And the net-kaon multiplicity fluctuations

also are used to approximate to the fluctuations of the net-

strangeness. To search for the CP in heavy-ion collisions,

the event-by-event multiplicity fluctuations are not neces-

sary conserved quantities, for example, the proton number

fluctuations itself can reflect the singularity of the critical

point and can be directly used to search for the CP.

However, there are two advantages in using the conserved

quantities, one is that it can be directly connected to the

susceptibilities of system, which can be computed in first

principle lattice QCD, the other one is that due to the

dynamical expansion of the QCD medium created in

heavy-ion collisions, the signal of conserved quantities will

not be easily washed out by the diffusion process and can

be preserved in the final state [30].

In the following, we will discuss the fluctuation signa-

tures of the QCD critical point from various theoretical

calculations, such as r field and NJL model. Finally, we

will also show the effects of nuclear potential and baryon

number conservations on the cumulants of net-proton

(baryon) distributions.

4.1 Fluctuation signature near QCD critical point

The characteristic feature of critical point is the diver-

gence of the correlation length, which is limited by the

system size and finite time effects due to the critical

slowing down. When the critical point is passed by the

thermodynamic condition of the matter created in heavy-

ion collisions, the expected signature is the non-monotonic

variation of the observables with the colliding energy.

Many theoretical and model calculations including critical

fluctuations have been done for the fluctuations of con-

served charges (B, Q, S) along the chemical freeze-out

lines in heavy-ion collisions. Those can provide predictions

on the energy dependence of the fluctuation observables

when passing by the critical point.

4.1.1 r field model

One of the most important calculations is done with the

r field model [18, 19]. This calculations first time quali-

tatively discussed the universal critical behavior of the

fourth order (kurtosis) of multiplicity fluctuations near the

QCD critical point, which are realized by the coupling of

particles with the order parameter r field. The fluctuations

of order parameter field rðxÞ near a critical point can be

described by the probability distributions as

P½r� � expf�X½rðxÞ�=Tg; ð49Þ

where X is the effective action functional for the field r and

can be expanded in the powers of r,

X ¼
Z

d3x
ðrrÞ2

2
þ m2

r

2
r2 þ k3

3
r3 þ k4

4
r4 þ � � �

" #

;

ð50Þ

where mr ¼ 1=n and the critical point is characterized by

n ! 1. For the moments of the zero momentum mode,

rV ¼
R

rðxÞd3x. Then, we have

hr2
Vi ¼ VTn2; ð51Þ

hr3
Vi ¼ 2k3VTn

6; ð52Þ

hr4
Vic ¼ 6VT3½2ðk3nÞ2 � k4�n8; ð53Þ

where hr4
Vic is the fourth-order cumulants of the r field. It

is found that the higher-order fluctuations are with higher

power of the correlation length and diverge faster. If we

introduce the coupling of the particles with the r field, the

fourth-order cumulants of the particle multiplicity distri-

butions can be obtained as

hðdNÞ4ic ¼ hNi þ hr4
Vic

g d

T

Z

p

np

cp

 !4

þ � � � ; ð54Þ

where np is the equilibrium distributions for a particle of a

given mass, cp ¼ ðdEp=dmÞ�1
is the relativistic gamma

factor of a particle with momentum p and mass m, g is the

coupling constant and d is the degeneracy factor. The mean

value hNi in the r.h.s. of Eq. (54) is the pure statistical

contribution (Poisson).

Figure 8 left displays the sketch of QCD phase diagram

with critical contributions to the r field. When the chemical

freeze-out lines (green dashed line) pass by the critical

point from the crossover side, the probability distributions

of the r field change from Gaussian to the double-peak

non-Gaussian distribution and the corresponding fourth-

order cumulant changes from zero to negative (red region)

and to positive (blue region). When this r field couples

with the particles, it leads to a non-monotonic energy

dependence of the normalized fourth-order cumulants of

multiplicity distributions (x4 ¼ hðdNÞ4ic=hNi) along the

chemical freeze-out line, as shown in the right of Fig. 8,

where the baseline is unity, the Poisson baseline. However,

one has to keep in mind that here we only consider the

critical point and statistical fluctuation contributions. Other

dynamical effects in heavy-ion collisions, such as the

effects of baryon number conservations, hadronic scatter-

ing and resonance decay, are not taken into account. Fur-

thermore, the finite size and finite time effects, non-
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equilibrium memory effects are also important and need to

be carefully studied.

This critical point induced non-monotonic energy

dependence of the fourth-order cumulants along the

chemical freeze-out line has been confirmed by many

other model calculations, such as NJL [56–58],

PQM [26, 27], chiral hydrodynamics [59, 60], and other

calculations [61–64]. It indicates the r field calcula-

tions capture the main feature of the critical point.

However, it is still a crude model. Here, the r field

model only considers the critical fluctuations in static

and infinite medium without taking account for the off-

equilibrium effects in the dynamical expanding of the

fireball created in heavy-ion collisions. Recently, a

theoretical paper discussed critical fluctuations consid-

ering the off-equilibrium effects within Kibble–Zurek

framework and observed a universal scaling of critical

cumulants [65].

4.1.2 NJL model

A QCD-based effective model—the so-called Nambu–

Jona–Lasinio (NJL) model—is also widely used to study

the conserved charge fluctuations near the QCD critical

point. In this model, quark and gluon are the basic degree

of freedom. Although, there is no mechanism of the quark

confinement implemented in the NJL model, it is still a

simple and useful way to study the qualitative behavior of

the susceptibility of the conserved charges near the QCD

critical point. Here, we just show the results of two sus-

ceptibility ratios calculated from NJL model

m1ðqÞ ¼
vq3
vq2

; m2ðqÞ ¼
vq4
vq2

; ð55Þ

where q ¼ B;Q; S, vqn is the nth order susceptibility. Fig-

ure 9 shows the sign of the m1 and m2 of baryon, charge

and strangeness number. The red region is of positive

values, whereas the blue region represents negative values.

The yellow regions represent the values of m1 and m2 are

very close to zero. One may notice that the signals from

baryon number fluctuations are stronger than from charge

and strangeness number fluctuations. This is mainly due to

the mass effects that the strange quark mass (ms) is much

heavier than the mass of light quarks (mu;md). Figure 10

displays three colored hypothetical chemical freeze-out

lines. The red solid freeze-out line is fitted to recent

experimental data. The parameterized formula for obtain-

ing the three curves is

TðlBÞ ¼ a� bl2
B � cl4

B; ð56Þ

where a ¼ 0:158 GeV, b ¼ 0:14 GeV�1, and c ¼ 0:04

(solid), 0.08 (dot-dashed), 0.12 (dashed) GeV�3. The

relation between baryon chemical potential (lB) and col-

lision energy can be parametrized as [66]

lBð
ffiffi

s
p

Þ ¼ 1:477

1 þ 0:343
ffiffi

s
p : ð57Þ

With the freeze-out curve and Eq. (57), we plot the m1;m2

of B, Q, S as a function of colliding energy in Fig. 11 along

the three chemical freeze-out lines as shown in Fig. 10.

The black dashed lines in Fig. 11 left are the results from

the free quark gas model. When approaching the critical

Fig. 8 (Color online) (Top left) The sketch of the QCD phase

diagram with sign of the fourth-order cumulants of the r field due to

critical contributions [18, 19]. The red region represents negative

values, and the blue region positive values. The green dashed line is

the chemical freeze-out lines in heavy-ion collisions. (Bottom left)

The probability distributions of the r field and the corresponding sign

of the fourth-order cumulants of the r field distributions. (Right) The

expected non-monotonic energy dependence for the normalized

fourth-order cumulant of multiplicity distributions

(x4 ¼ hðdNÞ4ic=hNi) when the chemical freeze-out line passes the

critical region indicated in the left-top plot

112 Page 10 of 40 X. Luo, N. Xu

123



point at low energies, the NJL model predicts non-

monotonic signal of the susceptibility ratios, while for

the free gas case all moments are close to 0.

Furthermore, we can infer that m2ðBÞ should be a better

probe of the critical behavior due to larger magnitude in

signal and also the most important one, having sign

changes from negative to positive with respect to colli-

sion energy than other cases. As we mentioned, since

there has no quark confinement in NJL model, the

baselines obtained from NJL model (away from critical

point) are different from the ones from hadron resonance

gas model, which is unity. One can also see that the

behavior near QCD critical point is very much different

from the results of weakly interacting quark gas. The

behavior of these two quantities m1ðBÞ and m2ðBÞ at

colliding energies at few GeV where experiments have

not covered yet are of great importance as some other

models predict opposite slope of these two quantities

compared to the NJL prediction. Figure 11 right shows

correlations between the m2 and m1 for baryon, charge,

and strangeness, respectively. We can see that the m2 and

m1 correlation along the three chemical freeze-out lines

for baryon shows a closed loop with sign changes and

looks like a banana shape. This is very different behavior

comparing with the charge and strangeness sector.

Fig. 9 (Color online) The sign of the m1 (top) and m2 (bottom) of the

baryon (B), charge (Q) and strangeness (S) number. The red region

represents positive value, while blue region represents negative value.

The dashed line is the crossover line, while the crosses denote the

first-order phase transition boundary [56]

Fig. 10 (Color online) The red solid, blue dot-dashed and green dash

lines represent three hypothetical freeze-out curves [56]. The black

dashed line is the crossover line and the crosses denote the curve of

the first-order phase transition boundary. The triangles are experi-

mental chemical freeze-out data
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4.2 Baselines and background effects in heavy-ion

collisions

In this section, we discuss the statistical baselines and

some of the non-CP physics background effects for the

fluctuations measurements in heavy-ion collisions. The

discussion of thermal blurring, diffusion and resonance

decay effects can be found in Refs. [67–69] and

Refs. [62, 63, 70, 71], respectively.

4.2.1 Expectations from Poisson, binomial and negative

binomial statistics

In the following, we discuss some expectations for

cumulants of net-proton multiplicity distributions from

some basic distributions [72].

1. Poisson Distributions If the particle and anti-particle

are independently distributed as Poissonian distribu-

tions. Then the net-proton multiplicity will follow the

Skellam distribution, which is expressed as: PðNÞ ¼

ðMp

Mp
ÞN=2

INð2
ffiffiffiffiffiffiffiffiffiffiffiffi

MpMp

p

Þ exp½�ðMp þMpÞ�; where the N is

the net-proton number, INðxÞ is a modified Bessel

function, Mp and Mp are the mean number of particles

and anti-particles, as shown in Fig. 1. The various-

order cumulants (Cn) are closely connected with the

moments, e.g.,

C1 ¼ hNi ¼ M;C2 ¼ hðdNÞ2i ¼ r2;C3 ¼ hðdNÞ3i
¼ Sr3;C4 ¼ hðdNÞ4i � 3hðdNÞ2i2 ¼ jr4;

where the dN =N � hNi, the r2, S, and j are variance,

skewness, and kurtosis, respectively. Then, we con-

struct, Sr ¼ C3=C2 ¼ ðMp �MpÞ=ðMp þMpÞ and

jr2 ¼ C4=C2 ¼ 1, which provide the Poisson expec-

tations for the various-order cumulants/moments of

net-particle distributions. The only input parameters of

the Poisson baseline for cumulants of net-particle

distributions are the mean values of the particle and

anti-particle distributions.

2. Binomial and Negative Binomial Distributions If the

particle and anti-particle are independently distributed

as Binomial or Negative Binomial distributions (BD/

NBD), the various-order cumulants of the net-particle

distributions can be expressed in terms of cumulants of

(a) (b) (c)

(d) (e) (f)

Fig. 11 (Color online) (Left) The m1 and m2 of baryon (B), charge

(Q) and strangeness (S) as a function of colliding energy along the

three hypothetical freeze-out lines as plotted in Fig. 10. The black

dashed lines are the results from a free quark gas model. (Right) The

correlation plot m2 versus m1 for baryon (top), charge (middle) and

strangeness (bottom) along three hypothetical freeze-out lines [56]
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the particle and anti-particle distributions:

Cnet�p
n ¼ Cp

n þ ð�1ÞnC �p
n . The first four-order cumu-

lants can be written as:

Cx
2 ¼ r2

x ¼ exlx;C
x
3 ¼ Sxr

3
x ¼ exlxð2ex � 1Þ;

Cx
4 ¼ jxr

4
x ¼ exlxð6e2

x � 6ex þ 1Þ;

where ex ¼ r2
x=lx, lx ¼ Mx, Mx is the mean values of

particles or anti-particles distributions, and x is the

particle or anti-particle. ex\1 means the underlying

distributions of particles or anti-particles are Binomial

distributions, while ex [ 1 gives Negative Binomial

distributions [73]. The input parameters for BD/NBD

expectations are the measured mean and variance of

the particle and anti-particle distributions.

4.2.2 Effects of baryon number conservation and nuclear

potential on net-proton (baryon) cumulants

The effects of baryon number conservations (BNS) and

mean field potential are more and more important at low

energies. To study those effects on the fluctuations of net-

proton (baryon) number, the rapidity and transverse

momentum dependence for the cumulants of the net-proton

(baryon) multiplicity distributions in Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 5 GeV have been studied within a microscopic

hadronic transport (JAM) model [74]. The simulations

were done with two different modes, which are the mean

field and the softening of equation of state (EoS) mode,

respectively. The softening of EoS is simulated by intro-

ducing attractive orbits in the two-body scattering to realize

a smaller pressure of the system. It was found that the mean

field potential and softening of EoS have strong effects on

the rapidity distributions (dN/dy) and the shape of the net-

proton (baryon) distributions. By comparing the results

from the two modes with the results from default cascade,

one found that the net-proton (baryon) cumulants and ratios

from the three modes have similar trends and show strong

suppression with respect to unity, which is attributed to the

effects of baryon number conservations [50, 75]. It means

that the effects of mean field potential and softening of EoS

might be not responsible for the observed strong

enhancement in the most central (0–5%) Au?Au collisions

at 7.7 GeV measured by the STAR experiment at RHIC.

Figure 12 shows cumulant ratios of net-proton (baryon)

distributions in Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 5 GeV from

JAM model. When increasing the rapidity acceptance (Dy),

the net-proton (baryon) cumulant ratios will decrease,

reach a minimum and then increase, which is the typical

effects of baryon number conservation [50, 75]. For dif-

ferent net-proton (baryon) cumulant ratios, the position of

the minimum is different. It indicates the mean field

potential and softening of EoS will not lead to large

increase above unity for the net-proton (baryon) cumulants

ratios. Instead, due to the baryon number conservation,

large suppression for the fluctuations of net-proton (bar-

yon) is observed. The rapidity dependence for the cumu-

lants ratios calculated from the three modes are with the

similar trend. It suggests that the observed similar trends

obtained by JAM model without implementing critical

physics are dominated by the effects of baryon number

conservation. On the other hand, one observes that the net-

baryon cumulant ratios show larger suppression with

respect to unity than the net-proton and the higher-order

cumulant ratios also show larger suppression than the lower

order. On the other hand, as the mean field potential

implemented in the JAM model is momentum dependent, it

is also important to study the momentum dependence for

the cumulants of net-proton distributions. In Fig. 13, for

different transverse momentum range, we plot the cumu-

lant ratios of net-proton distributions as a function of

rapidity window, which are calculated with the three dif-

ferent modes. The results computed from different modes

are with the similar trends. When the pT coverage is

enlarged, the cumulant ratios are suppressed with respected

to unity, the Poisson expectations. When the pT range is

small, the fluctuations are dominated by Poisson statistics

and the cumulant ratios are very close to unity. Another

study for the effect of mean field on baryon number fluc-

tuations done with a Relativistic Mean Field (RMF)

approach can be found in Ref. [76].

4.2.3 Net-proton versus net-baryon kurtosis from UrQMD

and AMPT model

The STAR experiment measures net-proton fluctuations

instead of net-baryon fluctuations and one may want to

know to what extent they can reflect the net-baryon fluc-

tuations in heavy-ion collisions. Therefore, Fig. 3 demon-

strates the comparison between moments of net-proton and

net-baryon distributions from AMPT [77] and

UrQMD [78] model calculations. We can find that the jr2

of net-baryon distributions are systematically lower than

the net-proton results. The differences are even bigger for

low energies than high energies. There are two possible

effects for the difference between net-proton and net-bar-

yon fluctuations, one is the non inclusion of neutrons in the

net-proton fluctuations, and the other one is the nucleon

isospin exchanging process due to D resonance formation

via pp and np interaction, the so-called isospin random-

ization, which will modify the net-proton fluctuations after

the chemical freeze-out. A set of formulas have been

derived to convert the measured net-proton cumulants to

the net-baryon cumulants by taking into account the above
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two effects [79, 80]. The converting formulas for various-

order net-baryon cumulants can be written as

Cnet�B
1 ¼ 2C

net�p
1 ; ð58Þ

Cnet�B
2 ¼ 4C

net�p
2 � 2C

tot�p
1 ; ð59Þ

Cnet�B
3 ¼ 8C

net�p
3 � 12ðCp

2 � C
�p
2Þ þ 6C

net�p
1 ; ð60Þ

Cnet�B
4 ¼ 16C

net�p
4 þ 16C

tot�p
3 � 64ðCp

3 þ C
�p
3Þ

þ 48C
net�p
2 þ 12C

tot�p
2 � 26C

tot�p
1 ;

ð61Þ

where tot-p means proton number plus anti-proton number.

The right side of Fig. 14 shows the net-baryon jr2 (C4=C2)

results, converted from the net-protons fluctuations. Within

large uncertainties, they are consistent with the net-baryon

results directly calculated with the AMPT model.

4.2.4 Cumulants and correlation functions

Fluctuations and correlations are closely related to each

other, and they are two sides of coins. The various-order

cumulants can be expressed into the linear combinations of

the multi-particle correlation functions [81, 82], which are

directly related to the correlation length (n) of system. The

multi-particle density is related to factorial moments as

Fn ¼hNðN�1Þ. . .ðN�nþ1Þi¼
Z

dp1. . .dpnqðp1; . . .;pnÞ;

ð62Þ

where Fn is the nth order factorial moment and qðp1; . . .;pnÞ
is the n particle density distributions. The integral sums

over the interested phase space. The generation function of

the factorial cumulants is
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Fig. 12 (Color online) Rapidity dependence for the Cumulants ratios

of net-proton and net-baryon multiplicity distributions in Au?Au

collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 5 GeV from JAM model computed in the three

different modes [74]. In the left are shown r2=M (C2=C1) and C3=C1.

The figure in the right shows Sr (C3=C2) and jr2(C4=C2) . The

dashed horizontal lines are with the value of unity
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Fig. 13 (Color online) Rapidity

dependence for the cumulants

ratios of net-proton distributions

in Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 5 GeV from JAM

model computed in the three

different modes and various

transverse momentum

ranges [74]. From top to bottom

are r2=M (C2=C1), C3=C1, Sr
(C3=C2), and jr2(C4=C2),

respectively. The dashed

horizontal lines are with the

value of unity
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gðtÞ ¼ lnhð1 þ tÞNi ¼
X

1

k¼1

ck
tk

k!
; ð63Þ

ck ¼ okgðtÞ
otk









t¼0

; ð64Þ

where ck is the kth order factorial cumulant, N is the ran-

dom variable. We have the relation between factorial

moments and correlation function as:

F1 ¼
Z

dpqðpÞ ¼ hNi; ð65Þ

F2 ¼
Z

dp1dp2qðp1; p2Þ ¼ F1
2 þ c2; ð66Þ

F3 ¼
Z

dp1dp2dp3qðp1; p2; p3Þ

¼ F1
3 þ 3c2F1 þ c3;

ð67Þ

F4 ¼
Z

dp1dp2dp3dp4qðp1; p2; p3; p4Þ

¼ F1
4 þ 6c2F

2
1 þ 4F1c3 þ 3c2

2 þ c4:

ð68Þ

On the other hand, the relation between factorial cumulant

(ck) and cumulants can be expressed as

ck ¼
X

k

i¼0

s1ðk; iÞCi; ð69Þ

Ck ¼
X

k

i¼0

s2ðk; iÞci; ð70Þ

where the s1 is the sterling number of the first kind, Ci is ith

order cumulant. Then, we have the following equations:

c1 ¼ C1 ¼ hNi; ð71Þ

c2 ¼ C2 � hNi; ð72Þ

c3 ¼ C3 � 3C2 þ 2hNi; ð73Þ

c4 ¼ C4 � 6C3 þ 11C2 � 6hNi; ð74Þ

C1 ¼ c1 ¼ hNi; ð75Þ

C2 ¼ hNi þ c2; ð76Þ

C3 ¼ hNi þ 3c2 þ c3; ð77Þ

C4 ¼ hNi þ 7c2 þ 6c3 þ c4: ð78Þ

It is well-known that high-order cumulants (Cn; n[ 2) are

zero for the Gaussian distribution and thus these are ideal

probe of the non-Gaussianity. For correlation function cn
(n[ 1), they are zero for Poisson distributions and thus

can be used to measure the deviation from Poisson fluc-

tuations. We define the correlation strength parameter

ĉk as

ĉk ¼
ck

hNik
; ð79Þ

where k ¼ 2; 3; 4. . .; n. The different-order correlation

strength parameter ĉk can reflect different physics process

of the system. If the system consists of many independent

sources, the correlation strength will be diluted and it

scales with the multiplicity as

ĉk /
1

hNik�1
: ð80Þ

For example, it is the case that the A?A system is super-

posed by many p?p collisions. However, if the particle

sources are strongly correlated with each other, which is

the case near the critical point, then we have

ĉk / const: ð81Þ

The long range correlation becomes dominated near the

critical point, and the cumulants are dominated by the

highest order correlation function as: Ck 	 ck / hNik. If

the thermal statistical fluctuations dominated in the system,

we have Ck 	 ck / hNi. Thus, to search for the critical

point in heavy-ion collisions, it is also important to study

the centrality, energy and the rapidity dependence of the

multi-particle correlation functions. This is effective way
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Fig. 14 (Color online) Energy

dependence of jr2 of net-proton

and net-baryon distributions for

0–5% Au?Au collisions from

the UrQMD (left) and the

AMPT string melting model

(right). The results marked as

solid black stars are based on

theoretical calculations using

Asakawa and Kitazawa’s

formula. The error calculation is

based on the Bootstrap method
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to look for the pattern of long range correlations near the

critical point in heavy-ion collisions and it is also very

useful to study the contributions of the non-critical back-

grounds, such as the baryon number conservations, reso-

nance decay, and hadronic scattering.

Figure 15 shows the rapidity dependence of the proton

cumulants and correlation functions in Au?Au collisions

at
ffiffiffiffiffiffi

s
NN

p
= 5 GeV from JAM transport model calcula-

tion [83]. It can be found that the second- and third-order

correlation functions show negative values when

enlarging the rapidity acceptance. The large negative

values of the second- and third-order proton correlation

functions also lead to strong suppression of the fourth-

order proton cumulant. Those observations can be

understood in terms of the baryon number conservations.

As one can see in Fig. 15, it seems that the fourth-order

proton correlation function is consistent with zero, which

is due to the absence of long range correlations in this

model calculations. It means the baryon number con-

servations, which is a large background effect for

searching for the critical point with fluctuations of con-

served quantities in heavy-ion collisions, have negligible

effects on the fourth-order proton correlation functions.

In other words, due to insensitive to the baryon number

conservations, the fourth-order proton correlation func-

tion is an ideal probe of the long range correlations

induced by the critical point.

5 Data analysis methods

In the data analysis, we applied a series of analysis tech-

niques to suppress backgrounds and make precise measure-

ments of the event-by-event fluctuation analysis in heavy-ion

collisions. Those include: (1) centrality bin width correc-

tion [84, 85]. This is to remove centrality bin width effect,

which is caused by volume variation within a finite centrality

bin size. (2) Carefully define the collision centrality to suppress

volume fluctuations and auto-correlations [85]. (3) Efficiency

correction for the cumulants. (4) Estimate the statistical error

with Delta theorem and/or Bootstrap methods [54, 55, 86, 87].

Those techniques are very crucial to precisely measure the

dynamical fluctuation signals from heavy-ion collisions. Let us

discuss those techniques one by one.

5.1 Collision geometry and centrality definition

Before introducing the background suppression meth-

ods, we would like to firstly discuss about the centrality

definition used in the heavy-ion collisions. The definition

of the collision centralities for two colliding nuclei is not

unique and can be defined by different quantities. A

commonly used quantity is the so-called impact parameter

b, defined as the distance between the geometrical centers

of the colliding nuclei in the plane transverse to their

Fig. 15 (Color online) Proton cumulants (top panels) and correlation functions (bottom panels) as a function of mean proton number (hNpi) in

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
= 5 GeV from JAM model. The mean proton number is varied by changing the rapidity coverage
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direction. Other quantities, such as the number of partici-

pant nucleons, Npart and the number of binary collisions,

Ncoll, can be also used. Figure 16 shows a Glauber Monte

Carlo event of Au?Au collision at
ffiffiffiffiffiffi

s
NN

p
= 200 GeV with

impact parameter b ¼ 6 fm [88]. The blue and red solid

circles represent the participant nucleons from the two

colliding gold nuclei. Figure 17 shows the average number

of participant nucleons (hNparti) and average number of

binary collisions (hNcolli) as a function of impact parameter

b. One can see that there is no one-to-one correspond

between Npart, Ncoll and impact parameter b. Unfortunately,

all of those geometrical variables cannot be directly mea-

sured in the heavy-ion collision experiment. Since the

particle multiplicity can be easily measured and also can

reflect the initial geometry of heavy-ion collision. The

centrality in heavy-ion collisions is usually determined by a

comparison between experimental measured particle

multiplicity and Glauber Monte Carlo simulations [88]. It

is denoted as a percentage value (e.g., 0–5, 5–10%,...) for a

collection of events to represent the fraction of the total

cross section. Figure 18 illustrates how to define a colli-

sion centrality in heavy-ion collisions by comparing the

particle multiplicities with Glauber Monte Carlo simulation

and the correlation between the particle multiplicities and

the Glauber-calculated quantities b and Npart. However, the

relation between measured particle multiplicities and col-

lision geometry is not one-to-one correspondence and there

are fluctuations in the particle multiplicity even for a fixed

collision geometry.

Fig. 16 (Color online)

Illustration of a Glauber Monte

Carlo event for Au?Au at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV with impact

parameter b ¼ 6 fm in the

transverse plane (left panel) and

along the beam axis (right

panel) [88]. The nucleons are

drawn with a radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rNN
inel=p

p

=2. Darker disks

represent participating nucleons

Fig. 17 (Color online) Average number of participants (hNparti) and

binary nucleon-nucleon collisions (hNcolli) along with event-by-event

fluctuation of these quantities in the Glauber Monte Carlo calculation

as a function of the impact parameter b [88]

Fig. 18 (Color online) An illustrated example of the correlation of

the total inclusive charged particle multiplicity Nch with Glauber-

calculated quantities (b;Npart) [88]. The plotted distribution and

various values are illustrative and not actual measurements
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5.2 Centrality bin width correction

The centrality bin width effect is caused by the volume

variation within a wide centrality bin and will cause an

artificial centrality dependence for the fluctuation observ-

ables [84, 85]. The centrality bin width correction (CBWC)

is to suppress the volume fluctuations effects in the event-

by-event fluctuation analysis within finite centrality bin

width. Experimentally, measurements are usually reported

for a wide centrality bin (a range of particle multiplicity),

such as 0–5, 5–10%,...etc., to reduce statistical errors. We

know that the smallest centrality bin is determined by a

single value of particle multiplicity. To suppress the cen-

trality bin width effect in a wide centrality bin, we calculate

the cumulants (Cn) for each single particle multiplicity bin

(Nch). Then, the results reported for this wide centrality bin

(Nch) is to take the weighted average. The weight is the

corresponding number of events in the particle multiplicity

bin divided by the total events of the wide centrality bin.

The method can be expressed as

Cn ¼

P

N2

r¼N1

nrC
r
n

P

N2

r¼N1

nr

¼
X

N2

r¼N1

xrC
r
n; ð82Þ

where the nr is the number of events for multiplicity bin r

and the corresponding weight for the multiplicity r,

xr ¼ nr=
P

N2

r¼N1

nr. N1 and N2 are the lowest and highest

multiplicity values for one centrality bin. Once having the

centrality bin width corrected cumulants via Eq.(82), we

can calculate the various-order cumulant ratios, for exam-

ple jr2¼ C4=C2 and Sr¼ C3=C2, where the j and S are

kurtosis and skewness, respectively. The final statistical

error of cumulants and cumulant ratios for wide centrality

bin can be calculated by standard error propagation.

To demonstrate the centrality bin width effect and test

the method of centrality bin width correction, we have

calculated the cumulants of net-proton distributions in

Au?Au collisions from UrQMD model in different ways.

Figure 19 shows the centrality dependence of the cumulant

ratios ðSr; jr2Þ of net-proton multiplicity distributions for

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
= 7.7, 11.5, 19.6, 27, 39, 62.4,

and 200 GeV from the UrQMD model calculations. The

open circle and open cross in Fig. 19 represent the results

obtained with and without applying the CBWC in the nine

centralities (0–5, 5–10, 10–20, 20–30 ...70–80%), respec-

tively. For the nine centralities, we clearly observe that the

results with CBWC are very different from those without

CBWC. This indicates the volume fluctuations in one wide

centrality bin do have a significant impacts on the value of

cumulants and the CBWC will make the values of the

cumulants systematically lower by reducing the effects of

volume fluctuations in one wide centrality bin. The solid

circles show the centrality dependence for 32 finer cen-

trality bins (0–2.5, 2.5–5, 5–7.5...77.5–80%) without

CBWC. In the case of 32 centrality bin, due to the finer bin

width, the centrality bin width effects are expected to be

very small. Interestingly, we found that the results calcu-

lated from 32 centrality bins show good agreement with the

results from nine centralities with CBWC. This further

confirms the effectiveness of the CBWC method described

above. On the other hand, we also tried to use the statistical

errors (error) as weight to perform the CBWC by replacing

the weight factor nr in Eq. (82) with 1=error2 for each

single multiplicity bin. The statistical error can be obtained

Fig. 19 (Color online) The centrality dependence of the moments

products Sr (left) and jr2 (right)of net-proton multiplicity distribu-

tions for Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
= 7.7, 11.5, 19.6, 27, 39, 62.4,

200 GeV in UrQMD model [85]. The solid dots represent the results

calculated from 32 centrality bins
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by the Delta theorem and/or bootstrap methods at each

multiplicity bin. It is found that the Sr with CBWC using

the statistical error as weight is consistent with the results

with events number weighted CBWC, but not for jr2. It

means the error weighted method cannot be used for

CBWC, which may be because the statistical error is not

only related to the number of events but also the cumulants

itself.

5.3 Volume fluctuations effects

Volume fluctuations are long standing notorious back-

ground for the event-by-event fluctuation analysis in

heavy-ion collisions [85, 89–94]. This is originated from

that one cannot directly measure the collision centrality

and/or initial collision geometry of the system of two

nuclei. It is difficult to completely eliminated as it is usu-

ally convoluted with the real fluctuation signals. Conse-

quently, this will lead to undesirable volume fluctuations in

the event-by-event fluctuation analysis of particle multi-

plicity in heavy-ion collisions. The volume fluctuations

will enhance the values of cumulants of the event-by-event

multiplicity distributions. However, the model calculations

in the paper [94] conclude that the effects of volume

fluctuations are too small to explain the large increase

found in the preliminary result of 0–5% most central net-

proton jr2 in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
= 7.7 GeV

measured by the STAR experiment.

In the following, we will demonstrate the volume fluc-

tuations in net-proton multiplicity fluctuations from

Au?Au collisions by using UrQMD model simulations and

discuss the method to suppress the volume fluctuations. To

avoid auto-correlation, the centrality are defined with

charged particle multiplicities by excluding the protons and

anti-protons used in the analysis. The relation between

measured particle multiplicity and impact parameter is not

one-to-one correspond, and there are fluctuations in the

particle multiplicity even for a fixed impact parameter.

Thus, we could obtain a finite resolution of initial collision

geometry by using particle multiplicity to determine the

centrality. As the Npart can reflect the initial geometry

(volume) of the colliding nuclei, the r2=M of Npart distri-

butions can be regarded as the centrality resolution for a

certain centrality definition. Figure 20 shows the centrality

dependence of r2=M of number of participant nucleons

(Npart) distributions for Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼7.7 and

200 GeV in UrQMD calculations with four different cen-

trality definitions. The different centrality definitions are

corresponding to the charged particles with four different g
coverage (jgj\0:5; 1:0; 1:5; 2:0). It shows that when we

define the centrality with jgj\2, the r2=M of Npart distri-

butions for 7.7 and 200 GeV are similar. We can find that

more particles are used in the centrality determination, the

better centrality resolution and smaller fluctuation of the

initial geometry (volume fluctuation) we obtain. Figure 21

shows the energy dependence of moment product (Sr; jr2)

of net-proton multiplicity distributions in Au?Au colli-

sions from UrQMD calculations for three different cen-

tralities (0–5, 30–40, 70–80%) with four different g ranges

for centrality definitions. The centrality bin width correc-

tions have been applied for all of the cases. Different

centrality definitions could cause different results due to

changing of magnitude of the volume fluctuations. By

extending the g coverage of the charged particles used in

Fig. 20 (Color online) The centrality dependence of the r2=M of

Npart distributions for Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7:7 and 200 GeV

in UrQMD model [85]. Four different centrality definitions are

corresponding to the charged particles with different g coverage

(jgj\0:5; 1:0; 1:5; 2:0)

Fig. 21 (Color online) The energy dependence of the moments

products ðSr;jr2Þ of net-proton multiplicity distributions for Au?Au

collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7:7, 11.5, 19.6, 27, 39, 62.4, 200 GeV in

UrQMD model [85]. Four different centrality definitions are corre-

sponding to the charged particles with different g coverage

(jgj\0:5; 1:0; 1:5; 2:0)
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centrality definition, we find the volume fluctuations are

strongly suppressed. The jr2 (fourth-order fluctuation) is

more sensitive to the volume fluctuations than the Sr
(third-order fluctuation). On the other hand, the volume

fluctuations have much smaller effects in the most central

collisions (0–5%) than in peripheral and mid-central col-

lisions. With those studies, we conclude that having more

particles in the centrality definition is an effective way to

improve the centrality resolution and suppress the effects

of volume fluctuations on the event-by-event fluctuations

observables in heavy-ion collisions.

In principle, both the centrality bin width effects and

centrality resolution effects are originated from volume

fluctuations. The former is the volume variation within one

wide centrality bin, and the latter is due to the initial vol-

ume fluctuations. These are two different effects and

should be treated separately. The centrality bin width

effects not only depend on the bin size but also dependent

on the centrality resolutions (or the way to define the

centrality). In this sense, these two effects are related to

each other and both depend on the centrality definition.

Figure 22 shows the Sr and jr2 of net-proton distributions

in Au?Au collisions from UrQMD model calculations

with centrality definitions at different g coverage (jgj\ 0.5

and 2). The larger g coverage means more particles are

included in the centrality definition and with better cen-

trality resolution. Indeed, it shows that the results from

wider g coverage centrality definition are get suppressed

comparing with the results from narrower g coverage

centrality definition. At fixed centrality definition, the

results with CBWC are always smaller than the results

without CBWC.

5.4 Auto-correlation effects

The auto-correlation effect is a background effect in the

fluctuation analysis and will suppress the magnitude of the

signals. For example, in net-proton fluctuation analysis, to

avoid the auto-correlation, we should exclude the corre-

sponding protons and anti-protons from the centrality

definition. For net-kaon fluctuations, we need to exclude

Kþ and K� in the centrality definition. To illustrate this

effects, we calculate the net-proton fluctuations in Au?Au

collisions from UrQMD model with two different centrality

definitions. One is using all charged particles and the other

uses the multiplicity of only charged kaon and pion to

define the collision centrality. Figure 23 shows that for Sr
and jr2 of net-proton distributions, the results with auto-

correlation are smaller than the ones without auto-corre-

lation. Meanwhile, the auto-correlation effects are stronger

at lower energies. This is because the overlap fraction of

proton/anti-protons used in the fluctuation analysis and in

the centrality definition increase when decreasing the

energies. In the data analysis, to avoid auto-correlation, we

have to exclude the particles used in the fluctuation anal-

ysis from the centrality definition.

5.5 Efficiency correction for cumulants

The detector always have a finite particle detection

efficiency. The observed event-by-event particle multi-

plicity distributions are the convolution between the orig-

inal distributions and the efficiency response function. We

need to correct this efficiency effect, and a deconvolution

operation is needed to recover the true fluctuations signals.

Fig. 22 (Color online) The centrality dependence of the moments

products Sr (left) and jr2 (right) of net-proton multiplicity distribu-

tions for Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7:7, 11.5, 19.6, 27, 39, 62.4,

200 GeV in UrQMD model [85]. The open circles and squares are

the results with CBWC and without CBWC at jgj\0:5 for the

centrality definition, respectively. The solid circles and squares are

the results with at jgj\2 in the centrality definition, respectively
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However, it is not straightforward to get the efficiency-

corrected results for the cumulants of particle multiplicity

distributions, especially for the higher-order fluctuations.

It is well known that the detection efficiency response

function is binomial distribution for a detector with good

performance. Based on binomial efficiency response

function, there are many discussions about the efficiency

correction methods for moment analysis [86, 87]. Here, we

provide a unified description of efficiency correction and

error estimation for cumulants of multiplicity distribu-

tions [55]. The principle idea is to express the moments

and cumulants in terms of the factorial moments, which

can be easily corrected for efficiency effect. By knowing

the covariance between factorial moments, we use the

standard error propagation based on the Delta theorem in

statistics to derive the error formulas for efficiency-cor-

rected cumulants. More important, this method can be also

applied to the phase space-dependent efficiency case,

where the efficiency of proton or anti-proton is not constant

within the studied phase space. One needs to note that the

efficiency correction and error estimation should be done

for each single particle multiplicity bin in each centrality

and just before the centrality bin width correction.

In the STAR experiment, the particle detection effi-

ciency can be obtained from the so-called Monte Carlo

(MC) embedding techniques [95]. The Monte Carlo tracks

are blended into real events at the raw data level. The

tracks are propagated through the full simulation chain of

the detector geometry with a realistic simulation of the

detector response. The efficiency can be obtained by the

ratio of matched MC tracks to input MC tracks. It contains

the net effects of tracking efficiency, detector acceptance,

decays, and interaction losses. For illustration purpose, we

discuss the application of the efficiency correction on the

net-proton fluctuation analysis in heavy-ion collisions.

Experimentally, we measure net-proton number event-by-

event wise, n ¼ np � n�p, which is proton number minus

anti-proton number. The average value over the whole

event ensemble is denoted by hni, where the single angle

brackets are used to indicate ensemble average of an event-

by-event distributions. For simplify, let us discuss constant

efficiency case for (anti-)proton within the entire phase

space. The probability distribution function of measured

proton number np and anti-proton number n�p can be

expressed as Ref. [86]:

pðnp; n�pÞ ¼
X

1

Np¼np

X

1

N �p¼n �p

PðNp;N�pÞ �
Np!

np! Np � np
� �

!
ðepÞnpð1 � epÞNp�np

� N�p!

n�p! N�p � n�p

� �

!
ðe�pÞn �pð1 � e�pÞN �p�n �p ;

ð83Þ

where the PðNp;N�pÞ is the original joint probability dis-

tribution of number of proton (Np) and anti-proton (N�p), ep
and e�p are the efficiency of proton and anti-proton,

respectively. To derive the efficiency correction formula

for moments and cumulants, let us introduce the bivariate

factorial moments:

Fi;kðNp;N�pÞ ¼
Np!

Np � i
� �

!

N�p!

N�p � k
� �

!

* +

¼
X

1

Np¼i

X

1

N �p¼k

PðNp;N�pÞ
Np!

Np � i
� �

!

N�p!

N�p � k
� �

!
;

ð84Þ

Fig. 23 (Color online) The centrality dependence of the moments products Sr (left) and jr2 (right) of net-proton multiplicity distributions for

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7:7, 11.5, 19.6, 27, 39, 62.4, 200 GeV in UrQMD model with the two different centrality definitions [85]
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fi;kðnp; n�pÞ ¼
np!

np � i
� �

!

n�p!

n�p � k
� �

!

* +

¼
X

1

np¼i

X

1

n �p¼k

pðnp; n�pÞ
np!

np � i
� �

!

n�p!

n�p � k
� �

!
:

ð85Þ

With Eqs. (83), (84) and (85), one can obtain a useful

relation between the efficiency-corrected and efficiency-

uncorrected factorial moments as

Fi;kðNp;N�pÞ ¼
fi;kðnp; n�pÞ
ðepÞiðe�pÞk

: ð86Þ

Then, the various-order moments and cumulants can be

expressed in terms of the factorial moments. Before

deriving the formulas for the moments and cumulants of

net-proton distributions, we need some mathematical

relationships between moments, central moments, cumu-

lants and factorial moments. Let us define a multivariate

random vector X ¼ ðX1;X2; . . .;XkÞ
0

and a set of number

r ¼ ðr1; r2; . . .; rkÞ
0
. The multivariate moments, central

moments and factorial moments can be written as

mrðXÞ ¼ E
Y

k

i¼1

Xri
i

" #

; ð87Þ

lrðXÞ ¼ E
Y

k

i¼1

ðXi � E½Xi�Þri
" #

; ð88Þ

FrðXÞ ¼ E
Y

k

i¼1

Xi!

ðXi � riÞ!

" #

; ð89Þ

where E denotes the expectation value operator, and the

mrðXÞ, lrðXÞ, and FrðXÞ are multivariate moments, central

moments, and factorial moments, respectively. Then, we

have the relation between the moments and central

moments by using binomial expansions

lrðXÞ ¼
X

r1

i1¼0

� � �
X

rk

ik¼0

ð�1Þi1þi2���þik r1i1ð Þ � � � rkikð Þ

� ðE½X1�Þi1 � � � ðE½Xk�Þikmr�iðXÞ ð90Þ

where i ¼ ði1; i2; . . .; ikÞ
0
. To get the relation between

moments and factorial moments, one needs the Stirling

numbers of the first (s1ðn; iÞ) and second kind (s2ðn; iÞ),
which are defined as

N!

ðN � nÞ! ¼
X

n

i¼0

s1ðn; iÞNi; ð91Þ

Nn ¼
X

n

i¼0

s2ðn; iÞ
N!

ðN � iÞ! ; ð92Þ

where N, n and i are nonnegative integer number. The

recursion equations for the Stirling numbers of the first and

second kind are

s1ðn; iÞ ¼ s1ðn� 1; i� 1Þ � ðn� 1Þ � s1ðn� 1; iÞ;

s1ðn; iÞjn\i ¼ 0; s1ðn; iÞjn¼i ¼ 1; s1ðn; 0Þjn[ 0 ¼ 0;

ð93Þ

and

s2ðn; iÞ ¼ s2ðn� 1; i� 1Þ þ i� s2ðn� 1; iÞ;

s2ðn; iÞjn\i ¼ 0; s2ðn; iÞjn¼i ¼ 1; s2ðn; 0Þjn[ 0 ¼ 0:
ð94Þ

The Stirling number of the first kind may have the negative

value, while the value of the second kind is always non-

negative. With the two kinds of Stirling numbers, one can

write down the relations between moments and factorial

moments as

mrðXÞ ¼
X

r1

i1¼0

� � �
X

rk

ik¼0

s2ðr1; i1Þ � � � s2ðrk; ikÞFrðXÞ; ð95Þ

FrðXÞ ¼
X

r1

i1¼0

� � �
X

rk

ik¼0

s1ðr1; i1Þ � � � s1ðrk; ikÞmrðXÞ: ð96Þ

With Eqs. (87) to (96), one can express the moments of net-

proton distributions in terms of the factorial moments.

There are two variables in net-proton number calculation,

the number of protons (Np) and anti-protons (N�p). The nth

order moments of net-proton distributions can be expressed

in terms of factorial moments

mnðNp�N�pÞ¼\ðNp�N�pÞn[¼
X

n

i¼0

ð�1Þi
n

i

� �

\Nn�i
p Ni

�p[

¼
X

n

i¼0

ð�1Þi
n

i

� �

X

n�i

r1¼0

X

i

r2¼0

s2ðn�i;r1Þs2ði;r2ÞFr1;r2
ðNp;N�pÞ

" #

¼
X

n

i¼0

X

n�i

r1¼0

X

i

r2¼0

ð�1Þi
n

i

� �

s2ðn�i;r1Þs2ði;r2ÞFr1;r2
ðNp;N�pÞ:

ð97Þ

Actually, two steps are needed to obtain this equation, the

first step is to expand the moments of net-proton to the

bivariate moments by using binomial expansion, and the

other one is to express the bivariate moments in terms of

the factorial moments using Eq. (95). Now, one can easily

calculate the efficiency-corrected moments of net-proton

distributions in heavy-ion collisions by using Eqs. (86) and

(97). Finally, we can express the efficiency-corrected

cumulants of net-proton distribution with the efficiency-

corrected moments by using the recursion relation:
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CrðNp � N�pÞ ¼ mrðNp � N�pÞ

�
X

r�1

s¼1

r � 1

s� 1

 !

CsðNp � N�pÞmr�sðNp � N�pÞ;
ð98Þ

where the Cr denotes the rth-order cumulants of net-proton

distributions. In principle, one can also express the factorial

moments in Eq. (97) in terms of the cumulants and the

various-order efficiency-corrected cumulants can be

expressed by the measured cumulants and efficiency as :

CX�Y
1 ¼ hxi � hyi

e
;

CX�Y
2 ¼ C

x�y
2 þ ðe� 1Þðhxi þ hyiÞ

e2
;

CX�Y
3 ¼ C

x�y
3 þ 3ðe� 1ÞðCx

2 � C
y
2Þ þ ðe� 1Þðe� 2Þðhxi � hyiÞ
e3

;

CX�Y
4 ¼ C

x�y
4 � 2ðe� 1ÞCxþy

3 þ 8ðe� 1ÞðCx
3 þ C

y
3Þ þ ð5 � eÞðe� 1ÞCxþy

2

e4

þ 8ðe� 1Þðe� 2ÞðCx
2 þ C

y
2Þ þ ðe2 � 6eþ 6Þðe� 1Þðhxi þ hyiÞ

e4
;

ð99Þ

where the (X, Y) and (x, y) are the numbers of ðp; �pÞ pro-

duced and measured, respectively. e ¼ ep ¼ e�p is the pð�pÞ
efficiency. Obviously, the efficiency-corrected cumulants

are sensitive to the efficiency and depend on the lower

order measured cumulants. For more detail discussion of

this method, one can also refer to Ref. [96].

In the previous discussion, the detection efficiency of

proton and anti-proton is considered to be constant within

the entire phase space. In many cases, the efficiency of

proton and anti-proton will depend on the phase space

(transverse momentum (pT), rapidity (y), azimuthal angle

(/)). In this sense, one has to reconsider the efficiency

correction method. In Ref. [87], a new method for dealing

with this case has been discussed, but the formulae for

efficiency correction are rather involved and difficult to

understand. In the following, we will provide an alternative

efficiency correction method for the phase space-dependent

efficiency, which is straightforward and easier to under-

stand. For simplify, we only consider the phase space of the

proton and anti-proton is decomposed into two sub-phase

spaces (1 and 2), within which the efficiency of proton and

anti-proton is constant. We use the symbol ep1
; ep2

and

e�p1
; e�p2

to denote the efficiency of proton and anti-proton in

the two sub-phase spaces, and the corresponding number of

proton and anti-proton in the two sub-phase spaces is Np1
,

Np2
and N�p1

, N�p2
, respectively. Using the relations in

Eqs. (95) and (96), one has

Fr1;r2
ðNp;N�pÞ ¼ Fr1;r2

ðNp1
þ Np2

;N�p1
þ N�p2

Þ

¼
X

r1

i1¼0

X

r2

i2¼0

s1ðr1; i1Þs1ðr2; i2ÞhðNp1
þ Np2

Þi1ðN�p1
þ N�p2

Þi2i

¼
X

r1

i1¼0

X

r2

i2¼0

s1ðr1; i1Þs1ðr2; i2Þh
X

i1

s¼0

i1

s

 !

Ni1�s
p1

Ns
p2

X

i2

t¼0

i2

t

 !

Ni2�t
�p1

Nt
�p2
i

¼
X

r1

i1¼0

X

r2

i2¼0

X

i1

s¼0

X

i2

t¼0

s1ðr1; i1Þs1ðr2; i2Þ
i1

s

 !

i2

t

 !

hNi1�s
p1

Ns
p2
Ni2�t

�p1
Nt

�p2
i

¼
X

r1

i1¼0

X

r2

i2¼0

X

i1

s¼0

X

i2

t¼0

X

i1�s

u¼0

X

s

v¼0

X

i2�t

j¼0

X

t

k¼0

s1ðr1; i1Þs1ðr2; i2Þ
i1

s

 !

i2

t

 !

� s2ði1 � s; uÞs2ðs; vÞs2ði2 � t; jÞs2ðt; kÞ � Fu;v;j;kðNp1
;Np2

;N�p1
;N�p2

Þ:

ð100Þ

Based on Eq. (100), we build up a relation between the

bivariate factorial moments of proton and anti-proton dis-

tributions in the entire phase space and the multivariate

factorial moments of proton and anti-proton distributions in

the two sub-phase spaces. As a direct extension of Eq. (86)

for multivariate case, the efficiency-corrected multivariate

factorial moments of proton and anti-proton distributions in

the sub-phase spaces can be obtained as

Fu;v;j;kðNp1
;Np2

;N�p1
;N�p2

Þ ¼
fu;v;j;kðnp1

; np2
; n�p1

; n�p2
Þ

ðep1
Þuðep2

Þvðe�p1
Þjðe�p2

Þk
;

ð101Þ

where fu;v;j;kðNp1
;Np2

;N�p1
;N�p2

Þ are the measured multi-

variate factorial moments of proton and anti-proton distri-

butions. By using Eqs. (97), (98), (100) and (101), one can

obtain the efficiency-corrected moments of net-proton

distributions for the case, where the proton (anti-proton)

are with different efficiency in two sub-phase spaces. If the

efficiency of the proton (anti-proton) has large variations

within the phase space, one needs to further divide the

phase space into small ones. It is easy and straightforward

to do this, but it is time consuming and requires more

computing resources.

To verify the phase space-dependent efficiency correc-

tion formulas, we perform a calculation of the net-proton

fluctuations with AMPT string melting model. The

invariant pT spectra of proton and anti-proton from AMPT

can be found in Fig. 24 left. In Fig. 24 right, we set by

hand the pT-dependent efficiency for (anti-)protons with

the efficiency at low pT (0:4\pT\0:8 GeV/c) : 80% and

high pT (0:8\pT\2 GeV/c): 50%, respectively. The effi-

ciency response function is set to be binomial distribution.

Then, the measured net-proton distributions are the con-

volution between original model inputs and the binomial

distributions. By doing this, we can calculate the measured

cumulants of net-proton of Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼
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39 GeV from AMPT string melting model with pT-dependent

efficiency. With the same procedures as we did in the real data

analysis, we apply the phase space-dependent efficiency for-

mulas to do the efficiency correction for the measured

cumulants. Figure 25 shows that the efficiency-corrected

cumulants are consistent with the results from original model

input within uncertainties. The statistical errors for the effi-

ciency-corrected cumulants are calculated from Delta theo-

rem, which will be discussed later. Finally, this test confirms

that the phase space-dependent efficiency correction formulas

we obtained are reliable and work well. On the other hand, if

the efficiency response function is non-binomial type, instead

of using analytical formulas, the unfolding method with real

response matrix should be used [97].

5.6 Error estimation for the efficiency-corrected

cumulants

Based on the Delta theorem in statistics, we obtained the

error formulas for various-order cumulants and cumulant

ratios [54]. However, those formulas can only be applied to

the case, where the efficiency is unity (e ¼ 1). It is not

straightforward and easy to calculate the statistical errors

for efficiency-corrected cumulants with e 6¼ 1 and one

cannot directly use the formulas obtained in the paper [54].

In the following, we will derive general error formulas for

estimating the statistical errors of efficiency-corrected

cumulants of conserved quantities in heavy-ion collisions

based on the Delta theorem in statistics. With those

Fig. 24 (Color online) (left)

The invariant pT spectra of

protons and anti-protons in

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p
=

39 GeV from AMPT string

melting calculation. (Right)

Illustration of pT-dependent

detection efficiency for protons

and anti-protons input by hand

with low pT

(0:4\pT\0:8 GeV/c) : 80%

and high pT (0:8\pT\2 GeV/

c): 50%

Fig. 25 (Color online) The

cumulants of net-proton

distributions in Au?Au

collisions at
ffiffiffiffiffiffi

s
NN

p
= 39 GeV

from AMPT model calculations.

The black stars denote the

results obtained from original

model results without any

efficiency effects. The black

empty squares represent the

measured cumulants by

applying the phase space-

dependent efficiency effects

(low pT (0:4\pT\0:8 GeV/c) :

80% and high pT

(0:8\pT\2 GeV/c): 50%.).

The red circles are efficiency-

corrected cumulants by using

the phase space-dependent

efficiency correction formulas
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analytical formulas, one can predict the expected errors

with the number of events and efficiency numbers. The

Delta theorem in statistics is a fundamental theorem which

is used to approximate the distribution of a transformation

of a statistic in large samples if we can approximate the

distribution of the statistic itself. Distributions of trans-

formations of a statistic are of great importance in appli-

cations. We will give the theorem without proofs, and one

can see Refs. [98, 99].

Delta Theorem Suppose that X ¼ fX1;X2; . . .;Xkg is

normally distributed as Nðl;R=nÞ, with R a covariance

matrix. Let gðxÞ ¼ ðg1ðxÞ; . . .; gmðxÞÞ, x ¼ ðx1; . . .xkÞ, be a

vector-valued function for which each component function

giðxÞ is real-valued and has a nonzero differential giðlÞ, at

x ¼ l. Put

D ¼ ogi

oxj









x¼l

" #

m�k

; ð102Þ

then

gðXÞ�!d N gðlÞ;DRD
0

n

� �

; ð103Þ

where n is the number of events.

Based on the Delta theorem, one can derive the general

error formula for a statistic quantity. Suppose, statistic

quantity / is as a function of random variables

X ¼ fX1;X2; . . .;Xmg, then, the transformation functions

gðXÞ ¼ /ðXÞ. The D matrix can be written as

D ¼ o/
oX

	 


1�m

; ð104Þ

and the covariance matrix R is

R ¼ n� CovðXi;XjÞ: ð105Þ

Based on Eq. (103), the variance of the statistic / can be

calculated as

Vð/Þ ¼ DRD
0

n
¼
X

m

i¼1;j¼1

o/
oXi

� �

o/
oXj

� �

CovðXi;XjÞ

¼
X

m

i¼1

o/
oXi

� �2

VðXiÞ

þ
X

m

i¼1;j¼1;i 6¼j

o/
oXi

� �

o/
oXj

� �

CovðXi;XjÞ;

ð106Þ

where VðXiÞ is the variance of variable Xi and CovðXi;XjÞ
is the covariance between Xi and Xj. To calculate the sta-

tistical errors, one needs to know the variance and

covariance of the variable Xi and Xj in Eq. (106). Since the

efficiency-corrected moments are expressed in terms of the

factorial moments, the factorial moments are the random

variable Xi in Eq. (106). Then, we need to know the

expression for variance and covariance of the factorial

moments. It is known that the covariance of the multi-

variate moments [100] can be written as

Covðmr;s;mu;vÞ ¼
1

n
ðmrþu;sþv � mr;smu;vÞ; ð107Þ

where n is the number of events, mr;s ¼ \Xr
1X

s
2 [ and

mu;v ¼ \Xu
1X

v
2 [ are the multivariate moments, the X1

and X2 are random variables. Then, we can obtain the

variance of the cumulants and cumulant ratios as

VarðhNiÞ ¼ l2=n; VarðC2Þ ¼ l4 � l2
2

� �

=n; ð108Þ

VarðC3Þ ¼ l6 � l2
3 � 6l4l2 þ 9l3

2

� �

=n; ð109Þ

VarðC4Þ ¼ l8 � 12l6l2 � 8l5l3 þ 48l4l
2
2 � l2

4

�

þ 64l2
3l2 � 36l4

2Þ=n;
ð110Þ

VarðSrÞ ¼ 9 � 6m4 þ m2
3ð6 þ m4Þ � 2m3m5 þ m6

� �

r2=n;

ð111Þ

Varðjr2Þ ¼ �9 þ 6m2
4 þ m3

4 þ 8m2
3ð5 þ m4Þ � 8m3m5

�

þ m4ð9 � 2m6Þ � 6m6 þ m8�r4=n;

ð112Þ

Varðjr=SÞ ¼ 64m4
3 � 8m3

3m5 � ð�3 þ m4Þ2ð�9 þ 6m4

h

� m6Þ þ 2m3 �3 þ m4ð Þð9m5 � m7Þ
þm2

3ð171 � 48m4 þ 8m2
4

�12m6 þ m8Þ�r2=ðn� m4
3Þ;

ð113Þ

VarðC6=C2Þ ¼ 10575 � 30m10 þ m12 þ 18300m2
3

�

þ 2600m4
3 � 225ð�3 þ m4Þ2 � 7440m3m5

� 520m3
3m5 þ 216m2

5 � 2160m6 � 200m2
3m6

þ 52m3m5m6 þ 33m2
6 þ ð�3 þ m4Þð10ð405

� 390m2
3 þ 10m4

3 þ 24m3m5Þ � 20ð6 þ m2
3Þm6

þ m2
6Þ þ 840m3m7 � 12m5m7 þ 345m8

þ 20m2
3m8 � 2m6m8 � 40m3m9

�

r8=n;

ð114Þ

where lr ¼ hðdNÞri is the rth-order central moments, mr ¼
lr=r

r and n is the number of events. For normal distribu-

tions with width r, the statistical error of the cumulants and

cumulant ratios at different orders can be approximated as

errorðCrÞ /
rr
ffiffiffi

n
p ; ð115Þ

errorðCr=C2Þ /
rðr�2Þ
ffiffiffi

n
p : ð116Þ
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Figure 26 shows the relative errors of cumulants and

cumulant ratios of Skellam distribution as a function of

number of events N. It is found that the higher-order

cumulants are with larger relative errors than the low

orders at the same number of events N.

Based on Eqs. (96) and (107), one can obtain the

covariance for the multivariate factorial moments as:

Covðfr;s; fu;vÞ

¼ Cov
X

r

i¼0

X

s

j¼0

s1ðr; iÞs1ðs; jÞmi;j;
X

u

k¼0

X

v

h¼0

s1ðu; kÞs1ðv; hÞmk;h

 !

¼
X

r

i¼0

X

s

j¼0

X

u

k¼0

X

v

h¼0

s1ðr; iÞs1ðs; jÞs1ðu; kÞs1ðv; hÞ � Covðmi;j;mk;hÞ

¼ 1

n

X

r

i¼0

X

s

j¼0

X

u

k¼0

X

v

h¼0

s1ðr; iÞs1ðs; jÞs1ðu; kÞs1ðv; hÞ�ðmiþk;jþh � mi;jmk;hÞ

¼ 1

n

X

r

i¼0

X

s

j¼0

X

u

k¼0

X

v

h¼0

X

iþk

a¼0

X

jþh

b¼0

s1ðr; iÞs1ðs; jÞs1ðu; kÞs1ðv; hÞs2ðiþ k; aÞs2ðjþ h;bÞfa;b

� 1

n
fr;sfu;v

¼ 1

n
fðr;uÞ;ðs;vÞ � fr;sfu;v
� �

ð117Þ

where the fðr;uÞ;ðs;vÞ is defined as

fðr;uÞ;ðs;vÞ ¼
X1!

ðX1 � rÞ!
X1!

ðX1 � uÞ!
X2!

ðX2 � sÞ!
X2!

ðX2 � vÞ!

� �

¼
X

r

i¼0

X

s

j¼0

X

u

k¼0

X

v

h¼0

X

iþk

a¼0

X

jþh

b¼0

s1ðr; iÞs1ðs; jÞs1ðu; kÞs1ðv; hÞs2ðiþ k; aÞs2ðjþ h; bÞfa;b:

ð118Þ

The definition of bivariate factorial moments fr;s, fu;v and

fa;b are the same as Eq. (85). Equation (117) can be put into

the standard error propagation formulae (106) to calculate

the statistical errors of the efficiency-corrected moments.

Besides the Delta theorem for estimating the statistical

errors, another computer intensive one is the so-called

bootstrap, which is based on resampling method. With the

bootstrap method, one needs to prepare B new samples.

Every new sample is sampling randomly with replacement

from the original sample and with the same number of

events as the original one. The uncertainty on a statistic

quantity is estimated by the root mean square of the B

values of the statistic quantity obtained from these samples.

In the MC simulation, we set the number of new samples

B ¼ 200. The variance of the statistic quantity U can be

given by

VðUÞ ¼

P

B

b¼1

Ub � 1
B

P

B

b¼1

Ub

� �2

B� 1

¼ B

B� 1

1

B

X

B

b¼1

U2
b �

1

B

X

B

b¼1

Ub

 !2
2

4

3

5:

ð119Þ

For comparison, we show the error estimation for the

efficiency-corrected jr2 of Skellam distributions with

Delta theorem and Bootstrap method in Figs. 27 and 28,

respectively. Both the Delta theorem and Bootstrap

method can reasonably describe the statistical errors of

the efficiency-corrected jr2 with various efficiency

numbers ranging from 30 to 100%. The probability for

the error bars of those data points touching the mean

value are very close to the expected value 68%. Since we

concentrate on the comparison of the magnitude of the

statistical error calculated from the Delta theorem and

Bootstrap methods, the data points are calculated from

the same data sets and thus the jr2 values are identical,

while the statistical error bars of the data points in the

two figures are not identical. This consistency verifies

that the analytical error formulas derived from Delta

theorem are correct. However, the calculation speed of

Delta theorem method is much faster than that of Boot-

strap method. On the other hand, since one cannot obtain

events further into the tails than those in the original

sample, the bootstrap method might run into difficulties

if the quantity whose variance is being estimated

depends heavily on the tails of distributions.

Figure 29 shows the statistical errors for the efficiency-

corrected jr2, Sr and r2=M as a function of efficiency. In

simulation, the efficiency effects are implemented for the

original Skellam distribution and the number of events is

fixed to be one million for each data point. It can be found

that the statistical errors are dramatically increase when

decreasing the efficiency number, especially for higher-

order cumulant ratios. We also fit those data points with the

functional form

Nevents
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Fig. 26 (Color online) Relative errors as a function of number of

events for various cumulants and cumulant ratios of Skellam

distributions based on the error formulas [54]
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f ðeÞ ¼ 1
ffiffiffi

n
p a

eb
; ð120Þ

where n is the number of events which is fixed to be one

million here, a and b are free parameters. The fitting results

of a and b are 40.6 and 2.06 for jr2, 6.02 and 1.65 for Sr,

4.96 and 0.89 for r2=M, respectively. The parameters a and

b depend on the original distribution and the studied

statistic quantity. We can understand the effects of the

efficiency on the statistical errors in an intuitive way. The

efficiency will cause the loss of information of the original

distributions, especially at the tails. The smaller the effi-

ciency is, the larger uncertainties we will get for the effi-

ciency-corrected results and needs more events to recover

the original information.

6 Experimental results

One of the main goals of the beam energy scan program

at RHIC is to explore the phase structure of the hot dense

nuclear matter created in the relativistic heavy-ion colli-

sions, especially searching for the QCD critical point and

mapping out the first-order phase boundary. From the year

of 2010 to 2014, RHIC has finished the first phase of BES

program, in which two gold nuclei collide at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7,

11.5, 14.5 (taken at 2014), 19.6, 27, 39, 62.4, and 200 GeV.

The STAR experiment has published the energy depen-

dence of cumulants (up to fourth order) of net-pro-

ton [101, 106] and net-charge [102] multiplicity

distributions in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5,

19.6, 27, 39, 62.4, and 200 GeV. For net-proton analysis,
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Fig. 27 (Color online) Each data point in each panel represents the

efficiency-corrected jr2 and statistical error for an event sample with

one million events that independently and randomly generated from

the original Skellam distribution with efficiency effects. Different

panels are with different efficiency varying from 30 to 100% The

error estimation is based on the Delta theorem. The dashed line in

each panel is the average jr2 value of the 100 samples [55]
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Fig. 28 (Color online) Each

data point in each panel

represents the efficiency-

corrected jr2 and statistical

error for an event sample with

one million events that

independently and randomly

generated from the original

Skellam distribution with

efficiency effects. Different

panels are with different

efficiency varying from 30 to

100% The error estimation is

based on the Bootstrap. The

dashed line in each panel is the

average jr2 value of the 100

samples [55]
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the protons and anti-protons are identified with ionization

energy loss in the Time Projection Chamber (TPC) of the

STAR detector within the transverse momentum range

0:4\pT\0:8 GeV/c and at mid-rapidity jyj\0:5. For the

net-charge, the charged particles are measured within

transverse momentum range 0:2\pT\2 GeV/c and

pseudo-rapidity range jgj\0:5.

Figure 30 shows the energy dependence of cumulant

ratios of net-proton and net-charge distributions of Au?Au

collisions for two centralities (0–5 and 70–80%) at
ffiffiffiffiffiffi

s
NN

p ¼
7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. The Skellam

(Poisson) expectations shown in the figure reflect a system

of totally uncorrelated, statistically random particle pro-

duction. It predicts the jr2 and Sr/Skellam to be unity for

Skellam expectations as well as in the hadron resonance

gas model. For the net-proton results, the most significant

deviation of Sr and jr2 from Skellam distribution is

observed at 19.6 and 27 GeV for 0–5% Au?Au collisions.

At energies above 39 GeV, the results are close to Skellam

expectation. As the statistical errors are large at low

energies (7.7 and 11.5 GeV), more statistics is necessary to

quantitatively understand the energy dependence of Sr and

jr2. To understand the effects of baryon number conser-

vation, etc., UrQMD model calculations (a transport model

which does not include a CP) for 0–5% are presented and

the results show a monotonic decrease with decreasing

beam energy. For more details on baseline comparison, one

can see [72]. For the net-charge results, we did not observe

non-monotonic behavior for Sr and jr2 within current

statistics. The expectations from negative binomial distri-

bution can better describe the net-charge data than the

Poisson (Skellam) distribution. More statistics is needed

for the measurements of net-charge moments.

In the CPOD2014 [107] and QM2015 confer-

ences [105, 108], the STAR experiment reported the pre-

liminary results of net-proton fluctuations with wider

transverse momentum coverage (0:4\pT\2 GeV/c). In

the new results, the pT range of (anti-)protons is extended

from 0:4\pT\0:8 to 0:4\pT\2 GeV/c. This is realized

by using the Time of Flight (ToF) detector to identify the

high pT (0:8\pT\2 GeV/c) (anti-)protons. At low pT

region (0:4\pT\0:8 GeV/c), only Time Projection

Chamber (TPC) is used to identify the (anti-)protons,

whereas the (anti-)protons at high pT (0:8\pT\2 GeV/c)

are jointly identified by TPC and ToF. Figure 31 left shows

the particle identification (PID) plot for TPC and ToF

detector. The white dashed boxes in the ToF PID plot

denote the protons (upper) and kaons (lower) PID cuts

Fig. 29 (Color online) The statistical errors of efficiency-corrected

jr2, Sr and r2=M as a function of efficiency for the original Skellam

distribution. The errors are calculated by the Delta theorem [55]
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region, respectively. Figure 31 right shows the proton

phase space in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 14.5 GeV

measured by the STAR experiment. The protons and anti-

protons in the regions covered by the blue dashed boxes are

used in the net-proton fluctuation analysis. Figure 32

shows the uncorrected event-by-event net-charge, net-kaon

and net-proton multiplicity distributions in three centrali-

ties (0–5, 30–40 and 70–80%) for Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p

= 14.5 GeV. Those raw distributions from a wide

centrality bin cannot be used to calculate the various-order

cumulant directly due to the effects of finite efficiency and

volume variation. However, there are some theoretically

works about using those distributions to extract

criticality [29, 109–111]. The shape of net-particle multi-

plicity distributions for different centralities is different.

The standard deviation r of the net-particle distributions

get bigger for central collisions than peripheral and mid-

central. We also observed that the net-charge multiplicity

distributions have the largest standard deviation, r, com-

paring with the net-proton and net-kaon distributions at

fixed centrality. As shown in Eq. (115), the statistical errors

of the rth-order cumulants are proportional to the rth power

of the standard deviation (rr). This indicates that with the

same number of events, the net-charge fluctuations mea-

surements will have much larger statistical errors than the

results of net-proton and net-kaon fluctuations. Detailed

Fig. 31 (Color online) (Left) particle identification plot for the Time

of Flight (ToF): mass square versus rigidity (momentum times

charge) and Time Projection Chamber (TPC): ionization energy loss

versus rigidity. (Right) Proton phase space (pT vs. y) in Au?Au

collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 14.5 GeV measured by the STAR detector [103]
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Fig. 32 (Color online)

Uncorrected raw event-by-event

net-charge (left), net-kaon

(middle) and net-proton (right)

multiplicity distributions for

Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p

=

14.5 GeV for 0–5% top central

(black circles), 30–40% central

(red squares), and 70–80%

peripheral collisions (blue

stars) [104, 105]
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discussions about the efficiency correction and error esti-

mation can be found in Refs. [55, 85].

Figure 33 shows the centrality dependence of detection

efficiency for (anti-)protons in two pT ranges

(0:4\pT\0:8 and 0:8\pT\2 GeV/c) in Au?Au colli-

sions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV.

The efficiency of protons and anti-protons at high pT,

0:8\pT\2 GeV/c is smaller than that of low pT,

0:4\pT\0:8 GeV/c. This is because, besides the Time

Projection Chamber (TPC), the time of flight (ToF)

detector is used to identify the high pT (anti-)protons and

the ToF matching efficiency is introduced in addition to the

TPC tracking/acceptance efficiencies. At low pT, only TPC

is used to identify protons and anti-protons. Thus, the

average efficiency for protons or anti-protons at low pT and

high pT can be calculated as

\e[ ¼

R

pT2

pT1

eðpTÞf ðpTÞdpT

R

pT2

pT1

f ðpTÞdpT

; ð121Þ

where the eðpTÞ ¼ etpcðpTÞ for 0:4\pT\0:8 GeV/c and

eðpTÞ ¼ etpcðpTÞetof ðpTÞ for 0:8\pT\2 GeV/c. The effi-

ciency-corrected pT distribution function f ðpTÞ is defined

as f ðpTÞ ¼ dN=dpT. The TPC efficiency (etpcðpTÞ) of pro-

tons or anti-protons is obtained from the so-called

embedding simulation techniques, and the ToF matching

efficiency (etof ðpTÞ) can be calculated from the real data.

The average efficiencies of protons and anti-protons have

centrality (multiplicity) dependence and increase from

central to peripheral collisions for all energies. Due to

material absorption of anti-protons in the detector, the

efficiencies of anti-protons are always slightly lower than

protons.

Figure 34 shows the centrality dependence of effi-

ciency-corrected cumulants (C1�C4) of net-proton, proton

and anti-proton distributions in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p

¼ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The

protons and anti-protons are measured within transverse

momentum 0:4\pT\2 GeV/c and at mid-rapidity

(jyj\0:5). At high energies, the cumulants (up to fourth

order) of net-proton, proton and anti-proton distributions

show a linear dependence on the average number of par-

ticipant nucleons (hNparti). This is consistent with the

additive properties of the cumulants that the system con-

sists of many multi-independent emission sources of pro-

tons and anti-protons and those emission sources are linear

dependent on the system volume (centralities). The proton

cumulants are always larger than the anti-proton cumulants

and the difference between proton and anti-proton cumu-

lants are larger in low energies than high energies. The

cumulants of net-proton distributions closely follow the

proton cumulants when the colliding energy decreases.

These observations can be explained as the interplay

between the baryon stopping and pair production of protons

and anti-protons. At high energies, protons and anti-protons

mainly come from the pair production and the number of

protons and anti-protons are very similar. At low energies,

the production of protons is dominated by baryon stopping

and the number of protons is much larger than the number

of anti-protons. The efficiency-corrected fourth-order net-

proton and proton cumulants (C4) of 7.7 and 11.5 GeV

significantly increase in the 0–5 and 5–10% centrality bins

with respect to the efficiency-uncorrected results. It means

the efficiency corrections are big effects, especially for the

Fig. 33 (Color online)

Centrality dependence of mid-

rapidity detecting efficiency for

protons and anti-protons in two

pT ranges, 0:4\pT\0:8 GeV/c

(circles) and 0:8\pT\2 GeV/c

(triangles), in Au?Au collisions

at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 19.6, 27,

39, 62.4, and 200 GeV. Black

solid points represent efficiency

of protons, and red empty points

are the efficiency of anti-

protons [107]
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high-order cumulants. Furthermore, the efficiency correc-

tion not only affects the values but also leads to increasing

of the statistical errors for the various-order cumulants, as

errorðCnÞ� rn=ea, where the r in numerator is the standard

deviation of the particle distributions and the denominator e
is the efficiency number, a is a positive real number [55].

The STAR collaboration reported preliminary results of

cumulants of net-kaon distributions in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in

the QM2015 conference [105]. The net-kaon fluctuations

are used to approximate the fluctuations of net-strangeness,

a conserved charge in strong interaction. The susceptibili-

ties of net-strangeness can be computed in lattice QCD.

The Kþ and K� are measured with transverse momentum

0:2\pT\1:6 GeV/c and at mid-rapidity jyj\0:5. At low

pT region (0:2\pT\0:4 GeV/c), the charged kaons are

identified by TPC only, whereas at high pT

(0:4\pT\2 GeV/c), ToF is also used in addition with

TPC. To avoid auto-correlation, the collision centrality is

determined by measured charged particles within jgj\1

excluding charged kaons. Figure 35 shows the efficiency-

corrected centrality dependence of cumulants (C1 �C4) of

net-kaon multiplicity distributions in Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p

=7.7–200 GeV. The red dashed lines represent the

Poisson expectations, where the probability distributions of

the Kþ and K� are assumed to be the independent Poisson

distributions. In general, various-order cumulants show a

linear variation with the averaged number of participant

nucleons (hNparti). The variance is systematically below

the Poisson expectations, especially at high energies. It

means that the Kþ and K� are correlated with each other

due to the pair productions. However, the C3 and C4 are

consistent with Poisson expectation within uncertainties.

The large uncertainties observed in the C3 and C4 are due

to the low detection efficiency of kaons (� 40%).

Figure 36 left shows the energy dependence of cumu-

lants (C1�C4) for net-kaon, Kþ, and K� multiplicity dis-

tributions in Au?Au collisions measured by the STAR

experiment. The mean values of the Kþ and K� show

monotonic decreasing trends when the energy decrease.

Furthermore, the mean values of Kþ is always above K�,

and the difference between these two values are bigger at

lower energies. These two observations are due to interplay

of the pair and associate production for Kþ, and K� as a

function of collisions energies. In addition to the pair

production of Kþ and K�, the Kþ is also produced by the

associate production with K hyperon and the fraction of Kþ

from associate production is lager at low energies than at

high energies. It also leads to the increasing of the net-kaon

mean values when decreasing the energies. The corre-

sponding Poisson expectations are also plotted as different

lines for comparison. In general, the cumulants of Kþ, and
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Fig. 34 (Color online) Centrality dependence of various-order

efficiency-corrected cumulants (C1�C4) for net-proton, proton and

anti-proton distributions in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5,

19.6, 27, 39, 62.4, and 200 GeV. Error bars in the figure are

statistical errors only. Blue empty circles represent the efficiency-

uncorrected cumulants of net-proton distributions [103, 107]
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K� distributions are consistent with the Poisson baseline

within uncertainties. Due to the correlation between Kþ

and K� , the variance of the net-kaon distributions are

smaller than its Poisson expectations, in which one

assumes the independent of the Kþ and K�. The higher-

order net-kaon cumulants are consistent with Poisson

expectations within uncertainties. Figure 36 right shows

the energy dependence of cumulants (C1 �C4) of net-

proton, proton and anti-proton multiplicity distributions in

Au?Au collisions measured by the STAR experiment. The

Fig. 35 (Color online) Centrality dependence of cumulants

ðC1;C2;C3, and C4Þ of net-kaon multiplicity distributions for Au?Au

collisions at
ffiffiffiffiffiffiffi

sNN
p

= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and

200 GeV [112]. The Poisson expectations are denoted as dotted lines.

The error bars are statistical errors
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Fig. 36 (Color online) (Left) Energy dependence of cumulants

(C1 �C4) for net-kaon, Kþ and K� multiplicity distributions in 0–5%

most central Au?Au collisions. (Right): energy dependence of

cumulants (C1 �C4) for net-proton, proton, and anti-proton multi-

plicity distributions in 0–5% most central Au?Au

collisions [104, 107]
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mean values of protons and net-protons show monotonic

increasing trends when decreasing the colliding energy,

whereas the mean values of anti-protons show opposite

trend. Those can be understood in terms of the interplay

between the baryon stopping and pair production for proton

and anti-proton as a function of collision energy. At low

energies, the baryon stopping becomes more dominate,

while at high energies, the pair production is the main

production mechanism of the proton and anti-protons. In

the figure, it also shows the comparison between the

cumulants of net-proton, proton and anti-proton distribu-

tions and the corresponding Poisson expectations. We

found that the higher the order of the cumulant, the larger

the deviations from the Poisson expectation for the net-

proton and proton. Largest deviations are found for C4 at

7.7 GeV. The cumulants of anti-proton distributions can be

described by the Poisson expectations very well. More

baselines discussions from Hadronic Resonance Gas

model, transport model UrQMD, binomial and negative

binomial have been also discussed.

Figure 37 shows the energy dependence of cumulant

ratios (r2=M, Sr=Skellam, jr2) of net-charge [104, 105],

net-kaon [104, 112], and net-proton [107] multiplicity

distributions in Au?Au collisions measured by the STAR

experiment. The black solid circles on the left figure rep-

resent the results from Au?Au collisions at
ffiffiffiffiffiffiffi

sNN
p

=

14.5 GeV, which is taken in the year 2014 and added into

the trend of the published net-charge results [102] (open

stars). The bands are the results from UrQMD calculations

without including the critical physics. The Poisson expec-

tations are displayed as dashed lines. The Sr values have

been normalized by the Poisson expectations, the Skellam

distributions. Thus, the Poisson expectations for both the

Sr=Skellam and jr2 are unity. It can be found that the

r2=M of net-charge, net-kaon and net-proton monotoni-

cally increase when increasing the collision energy. On the

other hand, both the Sr=Skellam and jr2 show weak

energy dependence for net-charge and net-kaon measure-

ments. No significant deviations from the Poisson expec-

tations and UrQMD calculation are observed for net-charge

and net-kaon cumulant ratios Sr=Skellam and jr2 within

uncertainties. We observe a clear non-monotonic energy

dependence of net-proton jr2 in top 0–5% central Au?Au

collisions. The 0–5% net-proton jr2 values are close to

unity for energies above 39 GeV and show large deviations

below unity around 19.6 and 27 GeV, and then increasing

above unity below 19.6 GeV. The UrQMD calculations of

net-proton jr2 displaying a strong suppression below unity

at lower energies are due to the effects of baryon number

conservation. However, this suppression is not observed at

low energies in the STAR data.

Figure 38 panels (a), (c), (d) show the energy depen-

dence of jr2 of net-charge, net-kaon and net-proton mul-

tiplicity distributions in Au?Au collisions measured by the
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Fig. 37 (Color online) Energy dependence of cumulant ratios (r2=M,

Sr=Skellam, jr2) of net-charge, net-kaon and net-proton multiplicity

distributions for top 0–5 , 5–10% central (green squares), and

70–80% peripheral collisions. The Poisson expectations are denoted

as dotted lines and UrQMD calculations are shown as bands. The

statistical and systematical error are shown in bars and brackets,

respectively [104, 105, 107, 108]
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STAR experiment for two centralities (0–5 and 70–80%) at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV.

The jr2 of net-charge distributions in Au?Au collisions
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 19.6, 27, 39, 62.4, and 200 GeV measured by

the PHENIX experiment [113] are shown in the panel (b)

of Fig. 38. It is observed that the jr2 of the net-charge and

net-kaon distributions measured by the STAR experiment

are with larger statistical errors than the errors of net-pro-

ton jr2. This is because the statistical errors of jr2 depend

on the width (r) of the multiplicity distributions

(errorðjr2Þ / rn�2=ð
ffiffiffiffi

N
p

�nÞ) and the net-charge distribu-

tions are much wider than the net-proton and net-kaon. On

the other hand, due to decay of kaons, the efficiency of

kaon (� 40%) is much lower than proton (� 80%), and

this also leads to larger statistical errors for net-kaon

fluctuations. For the STAR net-charge and net-kaon results,

we did not observe non-monotonic behavior for jr2 within

current statistics. The Poisson expectations shown as

dashed lines in the figure with unity value reflect a system

of totally uncorrelated, statistically random particle pro-

duction. It predicts the jr2 to be unity for Poisson expec-

tations as well as in the hadron resonance gas model.

However, the expectations from negative binomial distri-

bution can better describe the net-charge and net-kaon data

than the Poisson expectations. The PHENIX net-charge

jr2 are with smaller errors than the results measured by the

STAR experiment. This is because the PHENIX detector

has much smaller acceptance than the STAR detector and

thus the width of the net-charge distributions measured by

the PHENIX experiment is much narrower. We observe a

clear non-monotonic energy dependence for net-proton jr2

in the most central ( 0–5%) Au?Au collisions with a

minimum around 19.6 and 27 GeV. This non-monotonic

behavior cannot be described by various model calcula-

tions without including CP physics [74, 114]. Another

model calculation with volume fluctuations also failed to

describe this increasing at low energies [94]. At energies

above 39 GeV, the 0–5% net-proton jr2 are close to

Poisson expectations, while at energies below 19.6 GeV, it

shows large increasing above unity. This large increases in

0–5% net-proton jr2 at low energies.

We want to make several remarks : (1) one needs to

remember that the resonance decay effects are not excluded

in the current experimental measurements of fluctuations of

net-proton, net-kaon and net-charge. Based on the hadron

resonance gas model calculation [70], the decay effects for

net-proton jr2 is small and at 2% level. For the net-charge,

the decay effects are large. (2) The statistical error of

cumulants (DðCn)) is related to the width of the distribution

as DðCnÞ � O(rn) [54, 55]. Thus, the wider is the distri-

bution, the larger are statistical errors for the same number

of events. (4) It is predicted by theoretical calculations that

the net-baryon fluctuations are more sensitive to the criti-

cality than the net-charge and net-strangeness [16, 56]. (5)

The measurements of fluctuations of conserved quantities
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Fig. 38 (Color online) The STAR measured energy dependence of

jr2 of net-proton, net-charge (top left) and net-kaon distributions in

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and

200 GeV. The net-charge fluctuations measured by the PHENIX

experiment in Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 19.6, 27, 39, 62.4,

and 200 GeV are shown in top right panel. The statistical and

systematical error are shown in bars and brackets,

respectively [104, 105, 107, 108, 113]
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can be used to determine the freeze-out conditions in

heavy-ion collisions by comparing with the Lattice calcu-

lations and/or HRG calculations [25, 115–117].

7 Beam energy scan phase-II and STAR detector
upgrades

A second phase of the beam energy scan (BES-II) pro-

gram at RHIC has been planned in the years 2019–2020

and focusing on energy rang
ffiffiffiffiffiffi

s
NN

p ¼ 7:7� 20 GeV [3].

The long beam bunches and stochastic electron cooling

technique will be used to accelerate gold beams, which will

increase the luminosity about by a factor of 5–15 for cor-

responding collision energies compared to the BES-I. Since

the luminosity will decrease as decreasing the colliding

energy, the increasing of the luminosity is much more

necessary and important at low energies, such as 7.7 GeV.

This enables us to collect more number of events (� 10–20

times) to confirm the non-monotonic trends observed in the

BES-I data. Furthermore, it will allow us to draw a solid

conclusion and have more complete physical pictures from

various experimental measurements. To study the QCD

phase structure at high baryon density, operating the STAR

detector at fixed-target mode has been also proposed. In the

BES-II, fixed-target mode Au?Au collisions allow us to

have energy coverage from
ffiffiffiffiffiffi

s
NN

p ¼3 GeV (lB ¼
720 MeV) up to 7.7 GeV. In Fig. 39 left, the inner TPC

(iTPC) of STAR is to be upgraded to improve the energy

loss resolution and can extend the pseudo-rapidity cover-

age from jgj\1 to jgj\1:5 [118]. It is also planned to

install an end cap Time-of-Flight (eTOF) detector at the

west end of the STAR TPC to extend the PID capability in

the forward region [119]. The iTPC upgrade is very

important to search for the criticality and study the

dynamical evolution of the fluctuations by looking at the

rapidity acceptance dependence for the fluctuations of the

conserved quantities [67, 69]. In the forward and backward

regions of STAR detector, a new Event Plane Detector

(EPD) will be also built and used to replace the Beam-

Beam Counters (BBC) detector for centrality and event

plane determination, which can be used to suppress the

volume fluctuation and auto-correlation in the fluctuation

analysis. In Fig. 39 right, the blue band is the extrapolating

from current measurements by assuming a power law

behavior induced by critical fluctuations (jr2 / N3 [81]).

The width of the blue band is the estimated statistical errors

with the BES-II statistics and iTPC upgrades.

Figure 40 shows the STAR preliminary results of energy

dependence of the fourth-order fluctuations (jr2) of net-

proton, proton and anti-proton from the most top 5% cen-

tral Au?Au collisions. Those data were taken from the first

phase of the RHIC beam energy scan (BES-I) and from the

kinematic region of mid-rapidity jyj\0:5 and transverse

momentum 0:4\pT\2 GeV/c. Non-monotonic energy

dependence is clearly shown in the jr2 of net-proton and

proton distributions. Although the statistical errors are

large, the data show a strong enhancement at the highest

lB � 420 MeV, corresponding to the Au?Au central col-

lisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7 GeV. This indicates an attractive

correlation in nature at the large baryon density region. On

the other hand, the results from the transport model

UrQMD (yellow-line) show a monotonic decrease from

low to high baryon density region, reflecting the fact that

the baryon number conservation in such high-energy

nuclear collisions. All known model calculations have

shown just that. It appears that the baryon number con-

servation is dominant in those model simulations. Note that

Fig. 39 (Color online) (Left) iTPC and EPD upgrades of the STAR

detector for the second phase of beam energy scan at RHIC. Right

rapidity coverage dependence of the jr2 of net-proton distribution in

0–5% central Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7 GeV. The blue band

shows the expecting trend and statistical error for net-proton jr2 at

BES-II. For this analysis, the rapidity coverage can be extended to

jyj\0:8 with iTPC upgrades [3]
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in the Poisson limit, the absence of criticality or other

dynamical correlations, the jr2 is expected to be unity.

The green region in the figure is the projected error of

the fourth-order fluctuations jr2 of net-protons in the

second phase of the RHIC Beam Energy Scan (BES-II)

program [3]. The BES-II program, which is scheduled to

take place during the years of 2019 and 2020 for the

Au?Au collisions at 7.7–19.6 GeV, will take about 10–20

times (depending on energy) higher statistics data to con-

firm the non-monotonic behavior observed in the fourth-

order fluctuations (jr2) of net-protons in Au?Au collisions

in the BES-I measured by STAR. Since no one expects

protons freeze-out at the critical point, experimentally one

should search for the critical region instead of a

point [16, 18, 19]. Assuming the data in the figure are

related to the critical region, one must study the net-proton

fluctuations at even higher baryon density region, i.e., at

lower collision energies. At energy below 7.7 GeV, the

collider mode experiments become inefficient, so the fixed-

target (FXT) mode is the way out.

8 Summary

In this review, we summarized the fluctuations (up to

fourth order) of net-proton, net-charge, and net-kaon in

Au?Au collisions at
ffiffiffiffiffiffi

s
NN

p ¼ 7.7, 11.5, 14.5, 19.6, 27, 39,

62.4, and 200 GeV. Those data are taken in the year 2010

to 2014 and in the first phase beam energy scan program at

RHIC. The corresponding baryon chemical potential (lB)

coverage is from about 23*420 MeV. To make precise

measurements, a series of data analysis techniques have

been built up to suppress the volume fluctuation and auto-

correlation backgrounds. We also provide a unified

description of the finite detection efficiency correction and

error estimation for the various-order cumulants of net-

particle distributions. The statistical errors of the cumulants

are related to the measured standard deviation of distribu-

tions (r) and the particle detection efficiency as

errorðCnÞ / rn=ð
ffiffiffiffi

N
p

�nÞ.
In summary, we have:

Experimental observations

(1) Due to larger width of the net-charge distribution

and lower efficiency of charged kaons, we have

bigger statistical errors of cumulants of net-charge

and net-kaon than the net-proton cumulants. Within

current statistical uncertainties, the energy depen-

dence of the net-charge and net-kaon Sr and jr2 are

flat and consistent with Poisson expectations and

UrQMD model calculations.

(2) In general, various-order cumulants show linear

variation with the average number of participant

nucleons (hNparti). The interplay of the production

mechanisms for particle and anti-particle as a

function of collision energy have significant impacts

on the energy dependence of the cumulants.

(3) We observed a clear non-monotonic energy depen-

dence for the jr2 of the net-proton, proton

multiplicity distributions in 0–5% most central

Au?Au collisions measured by the STAR

experiment.

Theoretical and model calculations

(1) The non-monotonic behavior observed in the energy

dependence of the 0–5% net-proton, proton jr2 in

Au?Au collisions is consistent with a presence of

QCD critical point from model calculations, such as

r field, NJL , PNJL, and PQM models. Those model

calculations suggested an non-monotonic oscillation

pattern due to the sign change of the critical

contributions in different QCD critical regions.

However, it is still not conclusive yet and more

works about the dynamical modeling of heavy-ion

collisions are needed.

(2) The large increasing in the net-proton and proton

jr2 at low energies cannot be reproduced by various

transport model calculations. All known transport

model calculations show a strong suppression with

respect to unity at low energies, which is dominated

by the effects of baryon number conservations.

Fig. 40 (Color online) Energy dependence of the fourth-order

fluctuations (jr2) of net-protons (filled-circles), anti-proton (open-

triangles) an proton (open-squares) from the most top 5% central

Au?Au collisions at RHIC. Those data were taken from the first

phase of the RHIC beam energy scan (BES-I) and from the kinetic

region of mid-rapidity jyj\0:5 and transverse momentum

0:4\pT\2 GeV/c
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Future directions:

(1) Experimentally, in order to confirm the observed

energy dependence structures in the high moments

of net-protons in BES-I, the second phase of the

beam energy scan (BES-II) at RHIC has been

planned in 2019–2020 with increased luminosity [3].

This allows us to have 10 to 20 times more statistics

at energies
ffiffiffiffiffiffi

s
NN

p ¼ 7:7� 19:6 GeV to explore the

phase structure this low energy range with high

precision. The upgrades of iTPC and EPD are

ongoing in the STAR and will provide large rapidity

coverage and forward centrality determination in the

BES-II, respectively. The large rapidity coverage is

very important for us to perform the rapidity

dependence for the fluctuation analysis, which is

crucial to test the long range correlation as well as

power law behavior induced by QCD critical point.

For energies below 7.7 GeV, the fixed-target mode

becomes more efficient than collider mode. It also

has been tested and proposed to operate the STAR

detector under a fixed-target mode in the BES-II. A

fixed-target experiment called Compressed Baryonic

Experiment (CBM) at FAIR [120] will start in 2024

and, in its first phase SIS100, will cover the Au?Au

collision energy range of
ffiffiffiffiffiffi

s
NN

p ¼ 2:5� 4:7 GeV.

This will be an ideal experiment to search for the

QCD critical point at the high baryon density region

with high precision.

(2) We have mentioned that the first-order phase

boundary, the critical point and the smooth crossover

are closely related thermodynamically. At high net-

baryon density region, we are searching for the

signatures of the QCD critical point and/or the first-

order phase boundary. However, in the near future,

at the high-energy frontier, one should also search

for the experimental evidence of the smooth cross-

over. This can be done with higher-order fluctuations

of conserved quantities. At the vanishing baryon

chemical potential, lB � 0, although the transition is

a smooth crossover, there should have the remnant

criticality of the chiral transition. Higher-order

fluctuations, cumulants C6 (sixth order) or C8 (eighth

order) could show strong oscillation and should be

able to pick up the possible signal in heavy-ion

collisions at both RHIC and LHC. These results will

not only confirm experimentally the smooth cross-

over nature of the transition, may also provide the

information on the width of the crossover, which is

one of the key information of the QCD phase

diagram at small net-baryon density. On the other

hand, the measurements of the various-order corre-

lation functions as a function of centrality, rapidity

and energy are also very useful to further understand

the critical and non-critical physics contributions.

(3) We also want to point out that due to density

fluctuations near the QCD critical point, light nuclei

production and/or nucleon-clusters, such as deu-

teron, 3He and 4He as well as the energy dependence

of the low mass di-lepton yield [120–123] could also

be used to aid and complement to the critical point

searches at the high baryon density region. Of

course, these different observables are with different

systematics. Details analysis is needed in order to

understand these systematic effects.

(4) Theoretically, careful modelings for the critical

fluctuations and dynamical evolution of the thermo-

dynamic medium created in the heavy-ion collision at

different energies are needed to understand the phase

structure of QCD, in particular the de-confinement

transition and possible critical point. Many attempts

and progress have been made by physicist world-

wide [65, 124–126]. Those theoretical inputs are

particularly important to establish definitive connec-

tions between experimental observables and phase

structures in the QCD phase diagram.
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