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Abstract  Experiments were performed on a high-speed online random neutron analyzing system (HORNA system) 

with a 252Cf neutron source (up to 1 GHz sampling rate and 3 input data channel), to obtain time- and frequency- 

dependent signatures which are sensitive to changes in the composition, fissile mass and configuration of the fissile 

assembly. The data were acquired by three high-speed synchronized acquisition cards at different detector angles, 

source-detector distances and block sizes. According to the relationship between 252Cf source and the ratio of power 

spectral density, Rpsd, all the signatures were calculated and analyzed using correlation and periodogram methods. 

Based on the results, the simulated autocorrelation functions were utilized for identifying different fissile mass with 

Elman neural network. The experimental results show that the Rpsd almost remains at constant amplitude in frequency 

range of 0–100 MHz, and is only related to the angle and source-detector distance. The trained Elman neural network 

is able to distinguish the characteristics of autocorrelation function and identify different fissile mass. The average 

identification rate reached 90% with high robustness. 
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1 Introduction 

The interaction between neutrons and nuclear material 
can be used to unveil the inner structure of fissile 
material[1-3]. By analyzing the random neutron pulse 
signals from the fission induced by 252Cf neutrons, one 
obtains a series of parameters, such as autocorrelation, 
cross correlation, auto/cross power spectrum and ratio 
of power spectral density. Being sensitive to changes 
in composition, mass, and configuration of the fissile 
assembly, the parameters are very useful in obtaining 
reactivity of the fission system or fission materials.  

A great deal of research efforts have been made 
during the past 20 years. Mihalczo J T et al[4] have 
been doing the neutron pulse sequence detection and 
analysis using a 252Cf neutron source since mid 1990s, 
based on 252Cf source-driven noise analysis method[5], 
which is also known as power spectral density analysis 
method[6,7]. In China, studies in this field of research 

are in the startup stage, and limited to low speed (10 
–100 MHz sampling rate), low count rate (102–104 s−1) 
and non-realtime analysis and processing, while most 
of high-speed and high count rate spectrum analyses 
were done with Monte Carlo simulation package[8,9].  

In this paper, we focus on the calculation and 
analysis of various spectra of three-channel neutron 
pulse signals using periodogram and block correlation 
method. All the neutron pulse data are acquired by a 
high-speed online random neutron analyzing system 
(HORNA system) developed at our laboratory[10-12]. 
The data are collected at different angles, distances 
and block sizes at the sampling rate of 1GHz. The 
physical significance of random neutron signals is 
discussed. According to the linear relationship 
between the fissile mass and integrated autocorrelation 
function[5], the possibility of identifying different 
fissile masses is explored in temporal domain using 
the Elman neural network, where the characteristics of 
autocorrelation function is a key input variable.  
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Elman Neural Network (ENN)[13] is a type of 
partial recurrent neural network, which consists of 
two-layer back propagation networks with an 
additional feedback connection from the output of the 
hidden layer to its input layer. The advantage of this 
feedback path is that it allows ENN to recognize and 
generate temporal and spatial patterns[14]. This means 
that interrelations between the current input and 
internal states are processed to produce the output and 
represent relevant information in the internal states 
after training[14]. Combining it with our autocorrelation 
function, different fissile masses can be identified in 
the time domain, instead of the frequency domain.  

In Section 2 we give a brief description of this 
252Cf-based HORNA system and key characteristics of 
correlation functions. In Section 3, we present how to 
calculate and analyze the rate of power spectral 
density for the HORNA system. In this work, we also 
focused on acquiring and processing the data from the 
experiment with different angles, distances and block 
sizes. The identification of different fissile masses by 
Elman neural network is presented Section 4, with 
descriptions about how to generate the simulated 
autocorrelation data and how to train and integrate the 
data into the distributed Elman neural network, and the 
resulted identification rates are compared. 

2 System overview 

The 252Cf-source-driven noise analysis method has 
been evolved as a combination of randomly pulsed 
neutron measurements and Rossi-α measurements[15]. 
A 252Cf source is used to stimulate events in the fissile 
material and the subsequent emission of neutrons and 
gamma rays from the fissile system are measured with 
two or more detectors. A typical block diagram for this 
measurement is shown in Fig.1a. The 252Cf source, 
contained in an ionization chamber, provides a pulse 
signal for each spontaneous fission event. The source 
ionization detector is designated as Detector l and the 
radiation detectors are designated as Detectors 2, 3 etc. 
The pulses from the source and detectors are acquired 
over a large time interval (block size) of 512, 1024, 
2048 and 4096 time bins that can be as short as 1 ns. 
The source and detector signals are correlated with 
each other to obtain a wide variety of time- and 
frequency-dependent parameters/signatures. From the 

signatures the moments or reduced moments of the 
count events and the Feynrnan variance are obtained. 
Specific parameters of reactivity of the fissile material, 
the prompt neutron decay constant and other physical 
parameters can be derived, too. 

 

 

Fig.1  Block diagram and schematics of the HORNA system. 

Based on this method, we constructed an 
HORNA system[10,11], with its basic architecture shown 
in Fig.1b. It has three input channels: Channel 1 of the 
252Cf source detector, and Channels 2 and 3 of the 
detectors to detect neutrons from the fissile material. 
The detector signals from neutrons emitted from the 
252Cf source and fissile material are sent to modulation 
circuit that performs constant fraction discrimination 
(CFD) to produce well-defined NIM level pulses. The, 
NIM pulses from the three channels are synchronously 
sampled at 1 GHz sampling rate. A time bin having a 
signal is represented by “1”, and “0” otherwise. The 
pulses are inputted to high-speed acquisition card 
residing in a high-performance Windows-based host 
unit. Data acquisition is controlled by the software that 
includes a graphical user interface, digital signal 
processing algorithms, data archival, and a device 
driver for the acquisition card. All signal processing 
are performed online and executed on the host unit. 

Through the HORNA system, three signal 
sequences formed by “0” and “1” that reflect the time 
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distribution of the source or fission-induced neutrons 
can be obtained. These adjacent time intervals form a 
series of data blocks, with block sizes of 512, 1024, 
2048 and 4096. All the data blocks are processed 
through periodogram or block correlation analysis 
method, and over twenty time- and frequency- 
dependent signatures can be obtained, such as 
autocorrelation function of each channel (R11, R22, R33), 

cross correlation function between two channels(R12, 
R13, R23); multiplicity of each channel (M1, M2, M3); 
auto power spectral density of each channel (G11, G22, 
G33), cross power spectral density between two 
channels(G12, G13, G23), ratio of power spectral density 
(Rpsd), the reactivity of nuclear fissile material (Keff), 
prompt neutron decay constant(α), and other physical 
parameters. Typical signatures are shown in Fig.2. 

 

Fig.2  Plots of some signatures of the 252Cf measurement system.

The autocorrelation function of a detector 
channel can be sensitive to fissile mass. As an example 
one of the detector autocorrelation functions (R22) is 
shown in Fig.3.  

 

Fig.3  Autocorrelation function of Ch. 2 for 235U of different 
masses. 

Approximately, the R22 decreases exponentially 
from 40 to 100 ns. This means that R22 has a slight 
dependence on fissile mass, though this is not seen 

prior to 20 ns due to the dead time of the detection 
system as shown in Figs.2a and 2b. The detector 
autocorrelation functions were integrated over the time 
and the total correlated counts for the detectors were 
obtained with different fissile mass, as given in Table 1. 
The integral of the total correlated counts increases 
with the fissile mass. The integral of the 
autocorrelation functions increases by about 13% from 
13.97 to 16.43 kg of 235U. It can be inferred that the 
differences of autocorrelation function’s amplitude 
may reflect different fissile mass and this differences 
can be potentially used in the identification process. 
Table 1  Integral of detector autocorrelation for different 
fissile masses. 

Fissile mass / kg 13.97 14.83 15.90 16.43 

R22 0.0825 0.0870 0.0917 0.0959 

R33 0.0836 0.0834 0.0941 0.0972 
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3 Calculation and analysis of Rpsd  

3.1 The ratio of power spectral density 

Among all the parameters, Rpsd is independent of 
uncorrelated background, detector types and detection 
efficiency[4]. Rpsd is only related to characteristics of 
the 252Cf source and the relative position between the 
detectors when fissile material is not involved in. If all 
detectors are fixed before experiments, Rpsd shall be a 
constant for a given 252Cf source. Rpsd is defined as:  

*
12 13

psd
11 23

( ) ( )( )
( ) ( )

G ω G ωR ω
G ω G ω

=            (1) 

where * means complex conjugation, G11(ω) is the 
auto power spectral density of Channel 1, G12(ω) is the 
cross power spectral density between Channels 1 and 2, 
and so are G13(ω) and G23(ω). In Eq.(1), detection 
efficiencies in the numerator and denominator are 
cancelled much in the same way as in beta-gamma 
coincidence counting methods, and the frequency 
response of the detection systems is cancelled[4,5], too. 
This has been proved by measurements of the past 20 
years, in which the same value of Rpsd no matter what 
kind of detectors were used[16]. 

As the frequency increases, and the correlation 
decreases, Rpsd may maintain constant, and reflect the 
system performance effectively. So, Rpsd can serve as a 
key indicator in the calibration system without fissile 
material. As calculated from the plot in Fig.4, the 
mean value of Rpsd is 0.6568±0.01278 for frequencies 
of up to 100 MHz, i.e. Rpsd almost keeps steady and 
the result coincides with the theoretical analysis. 
Because of the decreased coherence, Rpsd decreases 
with increasing frequencies to about 0 at 500 MHz. 

3.2 Experimental 

To verify the effectiveness of the HORNA systems, a 
calibration without fissile material was carried out 
with a 252Cf source of 2.1×104 s–1 in fission rate and at 
sampling rate of 1 GHz. The detector positions are 
shown in Fig.5, where α=π/6, 9π/24, π/2 and π is the 
angle between Detectors 2 and 3, and L=15 and 30 cm 
is the source-detector distance. To analyze the impact 
of different calculation methods on the final results, 
we changed the blocksize (512, 1024, 2048 and 4096) 

to calculate Rpsd with the block correlation and 
periodogram methods. The calculated Rpsd (mean±SD) 
of up to 100 MHz are given in Table 2. 

 

Fig.4  Rpsd values in logarithmic coordinate. 

 

Fig.5  Position of the detectors. 

Table 2 shows that for a given set of 
experiments, whatever the angle and distance are, Rpsd 
remains steady at low-frequencies, and the difference 
between the results of block correlation method and 
periodogram method is about 10–3 under the same L, α 
and blocksize. So the choice of different calculation 
methods affects little, but the change of detector angle 
α brings obvious impact on the Rpsd. Mihalczo J T et 
al[16] showed that Rpsd is only related to α and L for a 
given 252Cf neutron source, no matter what kind of 
detectors are used. Its value is inversely proportional 
to L and has complicated trigonometric function 
relationship with α. From Table 2, the Rpsd increases 
with α, with a maximum at 9π/24 due to anisotropy of 
the 252Cf source.  

All these show that the calibration results agree 
with the theoretical analysis that Rpsd reflects the key 
feature of 252Cf source. A larger block size increases 
the Rpsd accordingly. In a small size block with a low 
rate 252Cf fission source and a large time interval 
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between two pulses signals, there may be only one 
pulse, making it hard to describe the correlation 
between the signals. In a big-size block, however, 
there can be more pulses strengthening the correlation, 
and the source signal characteristics can be fully 

depicted. If block size increases to cover the interval 
between two adjacent pulses, the Rpsd should remain 
constant. Therefore, statistics of the time interval 
should be analyzed and different block sizes and 
source intensities be chosen for a measurement.

Table 2  Result of the calibration experiments 

Block Correlation Method Periodogram Method 
No. 

α  
/ rad 

L 
/ cm 512 1024 2048 4096 512 1024 2048 4096 

1 π/2 30 0.6443±0.0125 0.6568±0.0127 0.6626±0.0127 0.6657±0.0129 0.6467±0.0157 0.6603±0.0203 0.6666±0.0133 0.6703±0.0189

2 π/2 30 0.6309±0.0215 0.6593±0.0257 0.6845±0.0287 0.6851±0.0335 0.6415±0.0201 0.6567±0.0299 0.6778±0.0295 0.6837±0.0353

3 π/2 30 0.6356±0.0382 0.6695±0.0436 0.6910±0.0605 0.7092±0.0809 0.6635±0.0337 0.6781±0.0406 0.6830±0.0674 0.6989±0.0712

4 π 15 0.7062±0.0209 0.7149±0.0281 0.7187±0.0153 0.7210±0.0159 0.7026±0.0210 0.7159±0.0254 0.7236±0.0147 0.7219±0.0156

5 π 15 0.6975±0.0149 0.7090±0.0204 0.7059±0.0298 0.7076±0.0120 0.7012±0.0136 0.7028±0.0181 0.7054±0.0311 0.6809±0.0117

6 π/6 15 0.4487±0.0097 0.4743±0.0112 0.4883±0.0134 0.4954±0.0171 0.4449±0.0089 0.4701±0.0122 0.4892±0.0143 0.4983±0.0101

7 9π/24 15 0.7863±0.0078 0.8326±0.0094 0.8559±0.0098 0.8648±0.0106 0.7878±0.0077 0.8362±0.0101 0.8618±0.0098 0.8691±0.0095

 

4 Elman neural network-based identifi-
cation for nuclear signal 

4.1 Elman neural network 

Based on the linearity between fissile mass and the 
value of integral of autocorrelation function, we used 
the Elman neural network method for identifying the 
nuclear signal. The Elman neural network is a 
feed-forward network with two layers (Fig.6). 

 
Fig.6  Architecture of the Elman neural network. 

This type of network differs from conventional 
ones in that the input layer has a recurrent connection 
with the hidden one. Therefore, at each time step the 
output values of the hidden units are copied to the 
input ones, which store them and use them for the next 
time step. This process allows the network to 

memorize some information from the past. In this way 
periodicity of the patterns can be better detected[13]. 

The activation functions for the hidden layer 
and output layer are tangent sigmoid function (tansig) 
and linear function (purelin), respectively, expressed in 
the following equations: 

Tansig: Φσ(n) = 2/(1+e−2σn) −1 
Purelin: Φ(n) = n 

where the parameter σ will be set to 1. The learning 
rule we used is the error back-propagation 
algorithm[14]. The learning rate λ can be chosen. 

4.2 Design and training of the distributed Elman 
neural network 

Here we chose R22 or R33 as input, and the normalized 
fissile mass u as output. Due to the dead time of this 
system described in Section 2, we chose the values of 
autocorrelation function just between 20 ns and 99 ns 
as the input to the neural network, which means that 
the nodes of input are 80. 

For a given number of samples, the network 
will not fully reflect the signal characteristics if the 
network parameters are not enough, or too many.  
And inputting the 80 values of R22 or R33 directly will 
make the network complex with increased training 
samples and time[12]. We divided the signal into 
segments and distributed them to sub-networks, so as 
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to construct a distributed neural network to identify the 
signal partly (Fig.7). The distributed neural network 
contains 16 sub-neural networks (Elman network), and 
the number of input node for each subnet was 5, and 
the outputs of the 16 sub-network were averaged. 

 

Fig.7  Schematic diagram of distributed Elman network. 

As the autocorrelation function decays 
exponentially, and the integration of autocorrelation 
function between different fissile mass is of 
approximate linearity (Section 2), we multiplied the 
autocorrelation result by a random coefficient 
generated from a standard normal distribution 
sequence to get different samples, as shown in Eq.(2): 

b+= x
x

y *
)max(*2

1           (2) 

where y is the coefficient sequence, x is the standard 
normal distribution sequence, and b is the weight 
applied to distinguish the signal amplitude. In this 
way, 10 sets of signals which include 4 kinds of 
fissile mass were generated. Five sets of the signals 
were used as the training samples and the others as 

the test samples. Fig.8 shows one of the simulated 
signals. 

 

Fig.8  A simulated autocorrelation function with different 
fissile mass.        

The normalized mass output is given by Eq.(3): 

4,3,2,1
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        (3) 

where ui (i=1,2,3,4) denotes the fissile masses as the 
neural network output, min

iu  and max
iu  are the 

minimum and  maximum of the ith fissile mass. iu is 
the ith normalized mass output which belongs to [0,1] 
and 4 kinds of predefined fissile mass can be written 
as [0, 0.33, 0.66, 1]. 

4.3 The simulation results 

All the 16 sub-networks were trained with R22 or R33. 
After 1500 iteration steps, the training was terminated 
when the convergence error reached 0.01. The 
identification results are shown in the Fig.9. 

 
Fig.9  Identification results of R22 (a, b) and R33 (c, d). 
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Table 3  Result of identification for sub-networks 

R22 R33 Rate 
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

Mass 1 87.5 81.25 81.25 81.25 100 81.25 81.25 81.25 81.25 81.25 
Mass 2 75 93.75 87.50 100 87.50 75 75 75 75 75 
Mass 3 93.75 93.75 81.25 93.75 87.50 93.75 93.75 93.75 93.75 93.75 
Mass 4 100 87.50 100 93.75 100 100 100 100 100 100 
Error 0.022 0.017 0.017 0.024 0.012 0.027 0.027 0.027 0.027 0.027 

 
Figure 10 shows the integrated network output 

value compared with the predefined value. Each curve 
represents a fissile mass of the same output value, and 
there are five sets of samples for each mass. The 
sub-network identification results are given in Table 3. 
Comparing the integrated network output value with 
the default value, they can basically keep pace, and the 
average identification rate reaches 90%. So, we can 
identify different fissile mass with Elman neural 
network by using autocorrelation function as the input 
vector.  

 

Fig.10  Identification results (solid line) vs. predefined value 
(dashed line). 

5 Conclusion 

Experiments were conducted to obtain key parameters 
of the HORNA system at different angles, source- 
detector distances and block sizes. Neutron signal data 
were acquired by three high-speed synchronized 
channels at sampling rate of 1 GHz. All the time- and 
frequency-dependent parameters, including auto/cross 
correlation functions, auto/cross power spectral 
density functions, coherence functions and ratio of 
power spectral density, were calculated and analyzed 
using block correlation and periodogram methods. 
Based on these, simulated autocorrelation functions of 

different fissile mass were generated and utilized for 
identification with an Elman neural network. Although 
experiments results show that the Rpsd remains at 
approximately constant amplitude at ≤100 MHz, and is 
only related to the detector angle and source-detector 
distance, we still need more data and make more 
experiments to verify why the average value of Rpsd is 
a bit smaller than the theoretical result. The trained 
Elman neural network could distinguish characteristics 
of the autocorrelation function and recognize different 
fissile mass. The average recognition rate reached 90% 
with high robustness. 
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