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Abstract
Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mecha-
nism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault 
diagnosis system was proposed based on knowledge graph. The subject–relation–object triples are defined based on CRDM 
unstructured data, including design specification, operation and maintenance manual, alarm list, and other forms of expert 
experience. In this study, we constructed a fault event ontology model to label the entity and relationship involved in the 
corpus of CRDM fault events. A three-layer robustly optimized bidirectional encoder representation from transformers 
(RBT3) pre-training approach combined with a text convolutional neural network (TextCNN) was introduced to facilitate 
the application of the constructed CRDM fault diagnosis graph database for fault query. The RBT3-TextCNN model along 
with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously. Experiments on 
the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential 
to improve the effect of intent recognition and entity extraction. Additionally, a fault alarm monitoring module was devel-
oped based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically. 
Furthermore, the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the 
development of a relatively intelligent and reliable fault diagnosis system. Finally, a CRDM fault diagnosis Web interface 
integrated with graph data visualization was constructed, making the CRDM fault diagnosis process intuitive and effective.
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1 Introduction

The control rod drive mechanism (CRDM) is the actuator 
of reactor startup, power regulation, and emergency shut-
down under accident conditions in nuclear power plants 
(NPPs) [1]. Once a malfunction occurs in the CRDM, it 
will considerably threaten the safety and reliability of the 
entire reactor operation. It is not easy to obtain accurate 

knowledge to establish a precise CRDM physical simula-
tion model. Additionally, it is difficult to mine fault feature 
information through sufficient actual fault data samples 
associated with CRDM. However, in the process of CRDM 
design, functional testing, and operation and maintenance, 
many technique documents, historical unstructured data, and 
huge amounts of empirical expert knowledge were accumu-
lated. All these provide rich fault knowledge, including fault 
symptoms description, troubleshooting methods, and fault 
propagation paths. It is difficult to extract and utilize this 
knowledge due to its complexity and semantic fuzziness. 
Therefore, it is of great significance for the plant’s opera-
tional safety to ascertain the plant status through efficient 
knowledge-based fault diagnosis approaches, which may 
largely relieve the operator of mental pressure and assist 
the operator to make effective decisions to reduce the loss 
caused by the occurrence of a fault event.
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Unlike data-driven or physics-based fault diagno-
sis approaches, the knowledge-based fault diagnosis 
approaches, which place no requirement on complete opera-
tion data or a precise mathematical model, are very effective 
and have explicit interpretations [2, 3]. Accordingly, many 
knowledge-based fault diagnosis methodologies applied in 
the field of NPPs have been proposed in the literature, yet the 
fault diagnosis is subject to limited measurements of fault 
data in real NPPs. One of the typical applications is the fault 
diagnosis expert system (ES). Qian et al. [4] built a fault 
diagnosis expert system based on the event-triggering mech-
anism in NPPs, and the belief rule base was constructed by 
Access relational database. Wang et al. [5] developed a rule-
based diagnostic platform and applied the multilevel flow 
model to represent the fault knowledge, which was acquired 
from domain experts and textbooks. Nevertheless, although 
fault diagnosis ES is consistent with the habits of human 
thinking and makes good use of unstructured data, such as 
expert knowledge, the complexity of knowledge representa-
tion restricts the performance of fault diagnosis ES, and it 
does not take into account the efficiency of knowledge stor-
age and querying. With the development of graph theory and 
probability statistic theory, the comprehensive graphical for-
malism for fault knowledge representation and fault uncer-
tain reasoning has become extremely popular. Liu et al. [6] 
proposed a signed direct graph (SDG) fault diagnosis model 
integrated with a decision table to solve the time delay prob-
lem and obtain the fault propagation path in NPPs. Zhao 
et al. [7] designed a fault diagnosis expert system based on a 
dynamic uncertain causality graph for NPP secondary loop, 
and the rules were presented by a causality graph, which was 
different from the traditional IF–THEN production rules rep-
resentation. Ma et al. [8] proposed a simplified SDG model 
for fault diagnosis to tackle the low efficiency of SDG, and 
a hybrid method, combining principal component analysis 
with support vector machine for fault detection and assessing 
the severity of the fault. Shi et al. [9] proposed a fault diag-
nosis strategy based on the directed graph model and built 
a knowledge supplement based on probability and statistics 
to achieve blind spot diagnosis and location.

From the results of the current literature research, the 
existing NPP fault diagnosis methodologies based on the 
graph model mainly revolve around the directed graphs, 
which consist of a set of vertices connected by directed 
edges (i.e., arcs). Notably, previous research related to NPP 
fault diagnosis based on the directed graph mainly focused 
on the SDG method, which utilizes semiotic analysis to 
describe the relationship between the vertices. Therefore, 
SDGs are not convenient for storage and querying due to 
the lack of exclusive efficient query language and storage 
tools. In practice, especially in the aspect of NPP fault diag-
nosis, this is inconvenient for the operator’s human–machine 
interaction. Furthermore, SDGs for fault diagnosis can only 

store limited fault knowledge, which is not sufficient to help 
the operator quickly grasp the occurred exception in NPPs. 
Therefore, it is necessary to develop a method that is rela-
tively more comprehensive and efficient in utilizing unstruc-
tured fault knowledge.

The knowledge graph, which has evolved from the 
directed graph, is a new form of graphical knowledge repre-
sentation. The modern knowledge graph, commonly utilized 
in knowledge bases similar to Google for searching, question 
and answer, decision making, artificial intelligence reason-
ing, and other aspects, stems from the 2012 announcement 
of Google. The knowledge graph is composed of nodes (i.e., 
vertices) and directed edges (i.e., relationships). Each node 
in the knowledge graph is called an entity. The knowledge 
graph is superior to and more complex than a knowledge 
base because it applies a reasoning engine to generate new 
knowledge and integrates one or more information sources. 
In addition, a knowledge graph has a customized and effi-
cient query language and storage database, which render it 
better adaptability in search, query, and decision making. 
In practice, knowledge graphs can be classified into two 
types: domain knowledge graphs and enterprise knowledge 
graphs [10]. Domain knowledge graphs have attracted exten-
sive attention in both industrial and academic fields. Diverse 
domain-specific knowledge graphs have been published in 
the fields of medicine, finance, social media, and energy. 
Existing review articles have provided a detailed summary 
with respect to the development of knowledge graphs [10, 
11]. Knowledge graphs provide a concise and intuitive 
abstraction for a variety of domains, where edges capture 
the relationships between the entities inherent in unstruc-
tured data.

In this study, we focused on the application of fault 
diagnosis analysis combined with a domain-specific 
knowledge graph. Deng et al. [12] constructed a top-down 
fault diagnosis event logic knowledge graph, which pro-
vides decision support for autonomous fault diagnosis of 
a robot transmission system. Liu et al. [13] proposed a 
fault diagnosis approach for mechanical equipment, which 
combines a one-dimension convolutional neural network 
(CNN), gated recurrent unit, attention mechanism, and 
a knowledge graph. The proposed model, verified over 
rolling bearing datasets under different loads, has shown 
good performance in fault diagnosis accuracy. Liu et al. 
[14] proposed a lightweight graph neural network model 
combined with an electrical equipment failure knowledge 
graph, which is derived from operational and maintenance 
records. The simulation results show that the effectiveness 
and robustness of the proposed method in the aspect of 
mining transformer concurrent faults are superior to con-
ventional CNNs. Indeed, these excellent research works in 
the general engineering fields have revealed the superiority 
of knowledge graphs in fault diagnosis. However, applying 
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knowledge graphs to NPPs has rarely been reported, espe-
cially in terms of fault diagnosis of key equipment or sys-
tems in NPPs. Pakonen et al. [15] built a semantic web 
ontology to represent knowledge about overall nuclear 
instrumentation and control (I&C) architecture. They 
demonstrated that this technique can be useful in build-
ing rich knowledge models, answering complex queries, 
and improving nuclear safety. Ontologies are the stand-
ard knowledge representation formalisms, which can be 
employed to define and explain the semantics of the terms 
used to label and describe the nodes and edges in knowl-
edge graphs [10]. Liu et al. [16] constructed a knowledge 
graph model of the transformer in China Qinshan NPP 
for fault maintenance, which can automatically extract 
the topic, key technology, title, proposal status, document 
source, and agenda items of technical documents.

The aforementioned study on the knowledge graph tech-
nique is a positive step forward in addressing fault diagnosis 
in NPPs. However, NPPs are relatively reluctant in adopt-
ing new technology. To bridge the practical gaps between 
knowledge graph and fault diagnosis in NPPs, we proposed 
a pilot scheme for fault diagnosis based on knowledge 
graph. The CRDM of the liquid fuel thorium molten salt 
reactor (TMSR-LF1) was taken as the research object, and 
we proposed a detailed construction process of knowledge 
graph for fault diagnosis. Fault query and fault real-time 
monitoring functions were collaboratively integrated into the 
developed fault diagnosis system. Simultaneously, Bayesian 
uncertainty inference combined with the variable elimina-
tion algorithm was adopted to enable the development of a 
relatively intelligent and reliable fault diagnosis system. The 
major contributions of this study are summarized as follows:

(1) A detailed construction process of knowledge graph for 
CRDM fault diagnosis is proposed. The unstructured 
data of CRDM, including design specifications, opera-
tion and maintenance manuals, alarm lists, and empiri-
cal expert knowledge, were employed as the resource 
of the fault knowledge graph.

(2) Fault query and fault real-time monitoring functions 
were collaboratively integrated into the developed fault 
diagnosis system to assist the operator to make timely 
and effective decisions when an exception occurs.

(3) Bayesian inference method combined with the vari-
able elimination algorithm was adopted to enable the 
development of a relatively intelligent and reliable fault 
diagnosis system.

(4) A fault diagnosis Web interface with graph data visuali-
zation was created, making the process of CRDM fault 
diagnosis intuitive and efficient.

The remainder of this study is structured as follows: 
Sect. 2 mainly introduces the related methods utilized to 

build the proposed CRDM fault diagnosis system, including 
knowledge graph construction and storage, fault query, fault 
alarm monitoring, Bayesian inference, and knowledge graph 
visualization. Section 3 introduces the specific implemen-
tation process of the proposed methods and discusses the 
relevant results. The conclusion and recommendations for 
future studies are detailed in Sect. 4.

2  Methodology

In this section, work related to the fault diagnosis ontology 
model construction and storage for CRDM is introduced, 
which is the foundation of the CRDM fault diagnosis sys-
tem. Then, a method to build the fault alarm monitoring 
module is proposed. This module can detect the fault alarm 
codes from the input/output controller (IOC) of the experi-
mental physics and industrial control system (EPICS) auto-
matically. To facilitate querying fault knowledge quickly 
and accurately, a set of methods that can extract entities and 
recognize the query intent simultaneously are introduced. 
Finally, a Web interface integrated with knowledge graph 
visualization is constructed based on the Django web frame-
work. The overall architecture of the fault diagnosis system 
is shown in Fig. 1.

2.1  Knowledge graph construction

The construction method of knowledge graphs can be 
grouped into two clusters: top-down and bottom-up [17]. 
Among these, the mode of bottom-top is to extract knowl-
edge from the data source first and then add the obtained 
entities and relationships to the knowledge base after it has 
been reviewed. The mode of top–bottom involves building 
the conceptual model first before extracting related entities 
and relationships according to the conceptual model. Ontol-
ogies are formal conceptual models, which consist of the 
knowledge representation and provide the definitions of the 
concepts and relationships associated with unstructured data 
[18]. A knowledge base based on an ontology model runs 
on the directed graph and can answer complex queries with 
reasoning. The format of fault events concerning CRDM in 
the fault knowledge corpus is fixed and requires a complete 
ontology model to update the corpus; therefore, using the 
top-down mode would be more convenient than the bottom-
up model when constructing the knowledge graph.

2.1.1  Ontology construction

The purpose of ontology model construction is to con-
ceptualize domain knowledge explicitly. Prior to building 
a knowledge graph for a specific domain, the knowledge 
concepts and the relationships between concepts need to 
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be defined in the ontology model, providing specifications 
for the extraction of subsequent entities and relationships. 
At present, the seven-step approach proposed by Stanford 
University is widely used to construct ontology, and it 
is more mature and effective to construct ontology with 
the protégé tool [19, 20]. In this study, we simplified the 
seven-step approach into four steps. The first step was to 
build terminology related to CRDM. The second step was 
to determine the classes and hierarchies of terms. The third 
step was the construction of the properties and relation-
ships of the classes, the properties included object and 
data properties. The last step was to determine the indi-
viduals by class.

In general, the major task of constructing ontology for 
fault diagnosis was to define the triples, which is com-
posed of three elements, namely the subject (S), relation 
(R), and object (O). The triples constitute a fault event, 
which is mainly derived from the CRDM fault knowledge 
corpus. Formally, e is used to represent a fault event, and 
the triples can be represented by formula 1.

Here, S and O represent the subject and objects in the 
description text of a fault event, respectively. S and O con-
stitute the entities of the CRDM fault diagnosis knowledge 
graph. R is the relationship between S and O, which cor-
responds to the event trigger word in the fault event text.

The ontology of the CRDM fault diagnosis knowledge 
graph can be divided into four conceptual classes from 
top to bottom, including equipment, components, fault_
alarm, and fault_symptom. Among them, the fault_alarm 
represents the fault alarm codes when a fault occurs, and 
the fault_symptom represents the symptom of a fault that 
appears on a sensor. In the fault knowledge corpus of 
CRDM, each fault event is represented by unstructured 
text and the fault events corresponding to conceptual 
classes need to be decomposed based on the subject–rela-
tion–object principle. The decomposed individuals will 
become the entities stored in the ontology model. Then, 
the relationships between each conceptual class need to 
be defined.

(1)e = [S] − [r ∶ R] → [O]

Fig. 1  Overall architecture of the CRDM fault diagnosis system based on knowledge graph
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This study defines three types of relationships between 
conceptual classes, including consist_of, has_fault, fault_
cause, and has_symptom. Further, consist_of represents 
the relationship between equipment and component, 
has_fault represents the relationship between equipment 
and fault_alarm, has_symptom represents the relationship 
between component and fault_symptom, while fault_cause 
represents the relationship between fault_symptom and 
fault_alarm. Some entity individuals have data proper-
ties, e.g., the property in each individual from the class of 
fault_alarm has three categories, including description, 
solution, and alarm_type. The description property mainly 
represents the content of the alarm signals, the solution 
property represents the measures to deal with the alarm 
signal, and the alarm_type property mainly gives a warn-
ing to the occurred fault.

After defining conceptual classes and relationships, the 
fault diagnosis ontology model is constructed by the pro-
tégé tool. Figure 2 shows the structure of the fault diag-
nosis ontology model. The display boxes of dot labeling 
in the fault diagnosis ontology model represent the con-
ceptual classes, while those of diamond marks indicate 
individual present in each class. The relationships between 
class and individuals are represented by solid lines with 
arrows. Furthermore, the relationships between individu-
als are represented by dotted lines with arrows, and dif-
ferent relationships are distinguished in various colors. 
In Fig. 2, the No. 3 control rod has a fault alarm code, 
namely 10JDEGT202XM25. The fault_cause of this fault 
alarm code is the R6H20, which is the fault_symptom of 
the sensor and is named as resolver_6. The resolver_6 is 
the component of the No. 3 control rod. Thus, the ontology 
model has clear classifications and affiliation relationships. 
The specific configuration of the CRDM fault diagnosis 
ontology model is shown in Table 1.

2.1.2  Graph storage

The above-mentioned fault diagnosis ontology model pro-
duced by the protégé development platform needs to be 
stored in a specific physical structure. Neo4j is one of the 
most popular graph database software, which consists of 
three elements: node, relationship, and attributes [12]. These 
elements correspond to the configuration of the constructed 
CRDM fault diagnosis ontology model. Thus, this study 
used the Neo4j graph database to store the CRDM fault 
diagnosis ontology model, which can represent the ontol-
ogy graph structure clearly. The nodes represent the con-
ceptual classes, and the relationships in Neo4j correspond to 
the relationships in the ontology model. The data properties 
of the ontology model will be stored in the attributes from 
the Neo4j database. Notably, the ontology model cannot be 
stored in the Neo4j graph database directly. However, the 
ontology model in the protégé development platform only 
supports the web ontology language (OWL) format, which 
conforms to the resource description framework (RDF) 
syntax. Therefore, the OWL file needs to be converted into 
an RDF file using the rdf2rdf jar package, which can be 
imported into the Neo4j graph database. Figure 3 shows 
parts of the knowledge graph stored in the Neo4j database.

Figure 3 shows the nodes corresponding to different enti-
ties that are displayed in various colors, and the relationship 

Fig. 2  Structure diagram of the 
CRDM fault diagnosis knowl-
edge graph ontology model

Table 1  Configuration of the CRDM fault diagnosis ontology model

Conceptual classes Relationships Data properties

equipment consist_of description
component has_fault solution
fault_alarm has_symptom alarm_type
fault_symptom fault_cause
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connects the head entity and tail entity. In this figure, the 
No. 3 control rod used a certain fault event for nuclear 
fuel compensation, with a fault alarm code named 10JDE-
GT203XM240, and the fault cause was R6L20, which is 
related to the No. 6 resolver. The No. 3 control rod consists 
of No. 6 resolver. Moreover, compared to the conventional 
SDG model, the fault knowledge graph can directly store 
more fault information, which covers the prior probability of 
fault symptom, fault description, and solution. With the help 
of the Neo4j graph database, detailed information related to 
the fault alarm can be queried in the Neo4j database using 
attribute elements handily.

2.2  Fault query

One of the potential of the CRDM fault diagnosis system 
is to deal with the input query statement and respond to 
the query content based on the Neo4j graph database. In 
this process, the fault-related nodes and relationships can be 
deterministically queried using the constructed fault knowl-
edge graph. This is beneficial for isolating the occurred fault, 
narrowing the scope of the troubleshooting, and eventually 
improving the efficiency of fault diagnosis based on Bayes-
ian inference.

Notably, the operator can use the criterion query language 
format named Cypher to set up a query in the Neo4j database 
when an exception occurs. Cypher is a friendly declarative, 
comprehensible, and high-efficiency language in querying 
node-relationship. The common query format is given as 
follows:

MATCH (n: entity1) – [r: relationship]-> [p: entity2]
WHERE n.uri = an individual in entity1

RETURN n,r,q

Consequently, in this study, we have introduced a set of 
methods that can extract the entity and recognize the query 
intent for fault querying.

2.2.1  Entity extraction

The purpose of entity extraction is to identify the subject 
of the query statement entered by the operator. The sub-
ject (i.e., entity) is the major component of executing the 
Neo4j graph database query paradigm, which has been 
stored in the fault knowledge graph. In this study, the Jieba 
tool with the precise mode was adopted to segment the fault 
query sentence for extracting the entity. It is one of the most 
popular Chinese word segmentation modules developed in 
Python. The fault diagnosis of CRDM is mainly relevant 
at the equipment level, which leads to a finite number of 
terms. Therefore, a domain terms dictionary corresponding 
to CRDM was built to ensure that terminology can be seg-
mented accurately. Then, each segmented word was queried 
individually in the dictionary. If matching words with the 
same meaning could be retrieved in the dictionary, the word 
was extracted as the recognized entity from the fault query 
statement. In this way, the entities related to the terms of 
CRDM can be accurately identified and extracted from the 
fault query statement. Figure 4 reveals the detailed algorithm 
process of entity extraction.

2.2.2  Intention recognition

Similarly, the query intent is associated with the relation-
ship between entities. The aim of intent recognition in this 
study was to classify the query intent from the operator, 
who uses the CRDM fault diagnosis system to query the 
information about the fault event and make decisions. For 

Fig. 3  (Color online) Display of the CRDM fault diagnosis knowl-
edge graph in Neo4j database (partial)

Fig. 4  Detailed algorithm process of entity extraction
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example: the operator wants to find out the possible fault 
cause of a fault alarm code 10JDEGT203XM240. The input 
sentence contains the entity named 10JDEGT203XM240, 
and the fault cause is the intent of the query. First, the fault 
diagnosis system needs to recognize this intent and extract 
the entity. Then, the fault diagnosis system uses the extracted 
entity and the classified intent to search for the answers in 
the constructed knowledge graph database. During this pro-
cess, natural language understanding is critical to the per-
formance of the CRDM fault diagnosis system. In Chinese, 
there are different expressions of query intention, but they 
all have the same semantics, e.g., What are the causes of 
the fault? or What is the problem causing the fault? These 
two queries are related to fault cause. Hence, inspired by 
previous research [21], a method integrating a three-layer 
robustly optimized bidirectional encoder representation 
from transformers (RBT3) pre-training approach and text 
convolutional neural network (TextCNN) was introduced to 
address intent recognition. Figure 5 illustrates a high-level 
view of the proposed RBT3-TextCNN model.

The model architecture of BERT is a multilayer bidi-
rectional transformer encoder based on the original trans-
former mode and released in the tensor2tensor library [22]. 
The BERT model provides a powerful context-dependent 
sentence representation and can be used for intent classi-
fication, which is a various target task [21]. Particularly, 
RBT3 is a small and effective pre-trained model derived 

from BERT [24]. Additionally, the TextCNN is a variation 
model of the CNN, which has a better performance in terms 
of Chinese text classification [23]. In this study, the RBT3-
TextCNN model was adopted to achieve high classification 
accuracy and low computational cost. The RBT3-TextCNN 
model consists of a word embedding layer, convolutional 
layer, global max-pooling layer, and fully connected layer, 
as shown in Fig. 5.

For a single-sentence classification task based on the 
BERT model, a special classification embedding ([CLS]) 
is inserted as the first token and a special token ([SEP]) is 
added as the last token. Hence, the input sentence with n 
words is constructed as X = ([CLS], x1, x2,⋯ , xn, [SEP]) . A 
word xi can be transformed into a word vector vi , the formula 
is as follows:

Consequently, the RBT3 model generates a word vector 
matrix V ∈ Rn×d , where n is the input length and d is the 
word vector dimension.

Subsequently, the feature map is generated by the convo-
lutional calculation in the TextCNN layer. The convolution 
kernel needs to be set as w ∈ Rh×d , where h is the height 
and d is the width. In this study, three types of convolution 

(2)vi = RBT3 (xi), i = 1, 2,… , n

(3)V = [v1, v2,… , vn]

Fig. 5  (Color online) Overall structure of the RBT3-TextCNN model
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kernels were set, including w1 ∶ (h1 = 3, d) , w2 ∶ (h2 = 4, d) , 
and w3 ∶ (h3 = 5, d) . Among these, the input and output 
channels of the convolution kernel were 1 and 256, respec-
tively. The feature cij generated by the word vector in the 
window vi∶i+h−1, h = [h1, h2, h3] is given by the following 
formulas:

Here, b ∈ R is a bias term, and ReLU is a nonlinear activa-
tion function. The feature cj ∈ Rn−hj+1 is generated by the 
convolution operation of the convolution kernel w and the 
word vector V , as shown in the following formula:

Then, the most important feature information is com-
pressed and retained through the global max-pooling (GMP) 
operation, which only takes the maximum value of each fea-
ture. The new feature z is obtained as follows:

where concat is the splicing operation and k is the total num-
ber of kernels. The final output classification result y of the 
fully connected layer is as follows:

where wdense and bdense are weights and bias terms of the fully 
connected layer, respectively; r ∈ Rh is the mask vector used 
to randomly drop elements out in z ; the symbol represents 
the element-level multiplication calculation; and softmax 
denotes the activation function, which can efficiently tackle 
the problem of multi-categories classification. Meanwhile, 
the sparse categorical cross-entropy is adopted as the loss 
function in this model, as shown in the following formula:

Among them, T  goes over all the output classes, pi indi-
cates the probability of the class as predicted by the model, 
and yi represents the real probability of the class as provided 
by the input data.

2.3  Fault alarm monitoring

Numerous fault alarm codes have been set up to detect the 
state of each crucial component of the CRDM in TMSR-
LF1. The related information about these alarm codes of 

(4)cij =

3∑

j=1

ReLU(wj ⋅ vi∶i+hj−1 + b), i = 1, 2,… , n

(5)cj = [c1j, c2j,… , c(n−hj+1)j], j = 1, 2, 3

(6)
c
�
j
= GMP{cj} = [c�

1j
, c�

2j
,… , c�

kj
], j = 1, 2, 3, k = n − hj + 1,

(7)z = concat (c�
1
, c�

2
, c�

3
) (axis = −1),

(8)y = softmax(wdense ⋅ (z⊙ r) + bdense),

(9)Loss = −

T∑

i=1

yi log pi

the occurred fault, including fault location, fault cause, 
and solution, has been stored in the CRDM fault diagno-
sis knowledge graph constructed by the above-mentioned 
method. The operator can use these fault alarm codes to 
query detailed fault information in the CRDM fault diagno-
sis system. However, once the fault alarm occurs, the opera-
tor needs to grasp the key information of the fault alarm as 
soon as possible and make a response to the fault quickly 
and accurately. Therefore, it is necessary to monitor the fault 
alarm codes at any time and present the information related 
to the appeared fault alarm to the operator automatically.

In this study, a fault alarm monitoring module was devel-
oped based on WebSocket, which is a new protocol provided 
by the Internet Engineering Task Force. The WebSocket 
protocol is a web technology that provides an effective and 
standardized solution for bidirectional, full-duplex com-
munication between a web browser and a web server [25]. 
Unlike the HTTP protocol, the WebSocket protocol allows 
bidirectional communication, which implies that the Web-
Socket server can push data to the client without the user’s 
request. WebSocket is a persistent protocol and responds to 
messages timely. Hence, once the fault alarm monitoring 
module in the CRDM fault diagnosis system establishes a 
connection with the IOC of the EPICS through the Web-
Socket server, the module can monitor the fault alarm code 
whenever necessary, greatly reducing the latency and con-
sumption of network bandwidth and hardware resources. 
The technical architecture diagram of the CRDM fault alarm 
monitoring module is shown in Fig. 6.

According to Fig. 6, the fault alarm code is set as a value 
of the process variable (PV) in the IOC of the EPICS. 
PyEpics is an interface for the channel access (CA) library 
of the EPICS to the Python programming language. The 

Fig. 6  (Color online) Diagram of the CRDM fault alarm monitoring 
module
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PyEpics provides an epics module to Python, with methods 
for reading from and writing to PV via the CA protocol. The 
WebSocket server does not rely on the graphical interface 
and can be deployed in the Python environment. Thus, the 
alarm code can be obtained by PyEpics and saved to the 
WebSocket server. In this study, the fault alarm monitor-
ing module was integrated into the Django web framework, 
which is a high-level Python web framework. With the help 
of the fault alarm monitoring module, the CRDM fault diag-
nosis system can monitor the occurrence of the CRDM fault 
alarm in real-time. When a fault alarm emerges, the sys-
tem can capture the fault alarm code automatically and dis-
play the detailed information of this fault alarm in the Web 
interface. The operator can make effective decisions quickly 
using the information provided by the fault diagnosis system.

2.4  Bayesian inference

The limited fault data and knowledge give rise to the 
uncertainty of diagnostic outputs, reducing the reliability 
of the fault diagnostic model [26]. Bayesian inference is an 
accurate prediction method that is especially useful when 
there is a lack of sufficient fault data but precise inference 
information is still needed. Bayesian inference has gained 
prominence in the nuclear field, including in radioactive 
substance identification [27] and nuclear data evaluation 
[28], and has a proven availability and reliability. Bayesian 
networks (BNs), based on strict probabilism, are a type of 
probabilistic graphical model based on Bayesian inference 
that effectively describes causality in uncertain problems 
and realizes inference and prediction. Consequently, it has 

attracted extensive attention in the field of intelligent fault 
diagnosis [29, 30].

The information corresponding to the CRDM fault com-
ponents, reasons, and symptoms has been stored in the 
Neo4j graph database. That is, if an exception occurs, the 
operators can use the Cypher language to quickly figure 
out the possible fault equipment and the causes to achieve 
the goal of fault isolation, which drastically reduces the 
scope of fault diagnosis. For instance, the following 
query statement can be used to query all the causes of an 
occurred fault:

MATCH (f:fault_symptom)- > [r:fault_cause]-(n:reason_
node) RETURN f,r,n

Therefore, this reasoning can be deemed as certain 
based on the Neo4j graph database. During the construc-
tion of the fault knowledge graph, the nodes and rela-
tionships related to the detected fault are clearly defined. 
Nevertheless, it still often contains unclear and uncertain 
knowledge in the practical application of a fault diagnosis 
system that is knowledge base oriented. In this study, a 
BN for uncertainty reasoning with the variable elimination 
algorithm was proposed to evaluate the exact likelihood 
of fault symptom occurrence on the foundation of a deter-
ministic fault isolation exploited knowledge graph and the 
prior knowledge of fault symptoms. The process of BN 
for fault diagnosis based on the fault knowledge graph is 
shown in Fig. 7.

Fig. 7  BN construction for fault diagnosis based on fault isolation using the fault knowledge graph
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2.4.1  BNs

BNs are well-established graphical formalisms for encod-
ing conditional probabilistic relationships between uncertain 
variables [31]. The structure of BNs is a directed acyclic 
graph (DAG) in which the nodes represent variables, arcs 
signify the existence of direct causal relationships between 
the linked variables, and strengths of these relationships are 
expressed by conditional probabilities. BNs aim to model 
conditional dependence, and therefore causation, by repre-
senting conditional dependence by edges in a DAG. BNs 
are ideal for taking an event that occurred and predicting the 
likelihood that any one of several possible known causes was 
the contributing factor. Bayes’ theorem is the foundation for 
uncertainty inference based on the BNs.

Bayes’ theorem is stated mathematically as follows:

where A and B are events and P(B) ≠ 0.

(1) P(A) refers to a prior probability without any given con-
ditions.

(2) P(B) refers to the probability of observing B , known as 
marginal probability.

(3) P(A|B) refers to the probability of event A occurring 
given that B is true, also called the posterior probability 
of A given B.

(4) P(B|A) refers to the probability of event B occurring 
given that A is true.

In the Bayesian context, P(A|B) and P(B|A) are all con-
ditional probabilities. For each node B in BN, P(A|B) is 
completely described in the CPT. Hence, the prerequisite in 
building the BN model for decision support and risk assess-
ment is to define the necessary conditional probability tables 
(CPTs), which rely on the judgment of domain experts. For 
a node in BN, along with n parents, which are Boolean, the 
size of the CPTs grows exponentially with n . This is known 
to be practically complex and intractable. To tackle the 
parameter explosion problem existing in CPTs, the Leaky 
Noisy-OR function has proven to be useful in simplifying 
the elicitation of complex CPTs in BNs involving Boolean 
variables.

2.4.2  Leaky Noisy‑OR function

The Leaky Noisy-OR function is a good approximation of a 
wide range of BN model fragments and requires only n + 1 
parameters for the full CPT specification [31]. Formally, the 
definition of the Leaky Noisy-OR function is as follows:

(10)P(A|B) = P(B|A)P(A)
P(B)

,

Let X = {X1,X2,⋯ ,Xn} be n Boolean variables, 
i.e.,Xi = {T ,F}, i = 1, 2,⋯ , n . Let Y  be a Boolean variable 
with parent nodes 

{
X1,X2,… ,Xn

}
 {X1,X2,⋯ ,Xn} . Then, the 

Leaky Noisy-OR function would be defined as follows [32]:

where Xp represents a set of states for all parent nodes, XT 
represents the set of all the parent nodes of T in Xp , ql repre-
sents the leak probability, and qi represents the failure prob-
ability. The corresponding concepts are defined as:

(1) Leak probability ql : Due to insufficient analysis, the 
cause of the fault event is not detected, while the cor-
responding fault symptom is detected. The probability 
of such happening is called leak probability.

(2) Failure probability qi : In contrast, the failure probability 
represents the probability that the cause is detected but 
the fault symptom is not detected because of monitoring 
means, measurement error, and low frequency of fault. 
In most cases, there are not enough fault cases, especially 
in NPP. Estimating the failure probability by expert 
experience and failure mechanisms is recommended.

2.4.3  Variable elimination

Bayesian inference is a method of statistical inference in which 
the Bayesian theorem is used to update the posterior probabil-
ity of a hypothesis as more evidence or information becomes 
available. More specifically, inference in BNs can diagnose 
the causes given the fault occurrence under causality. Sev-
eral exact approaches for computing posterior probabilities in 
BN have been proposed and implemented, including variable 
elimination (VE), junction tree propagation, and approximate 
inference. [33]. Among these, the VE algorithm, adopted in 
this study for the sake of the efficiency-complexity trade-off, 
is fundamental and easily understood. It tackles changes to 
the knowledge base more easily than other approaches. The 
detailed process of the VE algorithm is shown in Table 2:

Assuming that the BN contains n random variables to be 
eliminated and the type of each variable is Boolean, each 
step eliminates a random variable, and there are at most k 
probability distribution functions associated with each ran-
dom variable. Then, the time complexity of the VE algo-
rithm is O(n × 2k).

2.5  Knowledge graph visualization

Knowledge graph visualization can intuitively display the 
complex knowledge stored in the knowledge graph and helps 
the operator understand the equipment relationships of the 

(11)P(Y = T�Xp) =

�
1 − (1 − ql)

∏
Xi∈XT

qi XT ≠ �

ql XT = �
,
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structures and fault knowledge of the CRDM. In this study, 
the node-link method combined with the force-directed lay-
out was utilized to visualize the CRDM knowledge graph in 
the Web interface. The node-link method can map the enti-
ties and relationships saved in the knowledge graph to the 
nodes and lines of the two-dimensional plane, respectively. 
The force-directed layout uses the spring model to simu-
late the interaction between nodes through exclusion and 
attraction, which can reflect the close relationships between 
entities and topological attributes in the knowledge graph.

Most existing visual icon libraries support the force-
directed layout, including Echarts, D3.js, and Neovis.js. 
These libraries can be used to visualize graph data stored in 
the Neo4j graph database. Among these, D3.js is a JavaS-
cript library for manipulating documents based on data. 
D3.js combines powerful visualization components and 
strictly adheres to Web standards and does not rely on any 
framework; both the aesthetic and performance of D3.js out-
compete those of others.

The version of d3.v4.min.js was adopted in this study. 
This version not only supports SVG but also the use of Can-
vas. The flowchart for visualizing graph data in the Neo4j 

database is shown in Fig. 8. First, the graph data stored in 
the Neo4j database were exported as a JSON file, and the 
entities and relationships constitute a dictionary data for-
mat. Then, the entities and relationships were extracted and 
saved as nodes and links, respectively. Notably, the obtained 
nodes needed to be cleaned to remove duplicate individuals. 
Finally, the extracted nodes and links were rendered by the 
D3.js library and mapped to HTML, which was implemented 
in the Web interface.

3  Results and discussion

In this section, the experiment results related to the RBT3-
TextCNN model proposed for fault query are introduced. 
The performance of the RBT3-TextCNN is verified by the 
dataset generated by the actual fault knowledge corpus of 
CRDM in TMSR-LF1. Then, a case study about the Bayes-
ian inference based on the constructed CRDM fault knowl-
edge graph is introduced in terms of fault diagnosis. Next, 
the practical implementation of the fault alarm monitor-
ing module based on the WebSocket protocol and the Web 

Table 2  Process of VE algorithm based on BN

Given VE(N, x,E, e, �):
Input:
N : Bayesian Network
x : query variable
E : list of observed variables
where X = {x} and E are disjoint subsets of U
e : an observed value
� : an elimination ordering for variables U − X ∪ E

Output:
P(x|E = e)

Steps:
1. F = {all probability distributions in N}, i.e., F is the joint probability distribution 

of N
2. E = e, E is one of the factors in F
3. while ( � ≠ ∅):
4. remove the first variable Z from �
5. F ← Elim (F, Z)
6. end while
7.h(Q) =

∏
F f , f ∈ F

8. return h(Q)∕
∑

Q h(Q)

Elim (F, Z):
Input:
F: a set of functions
Z: the variable to be eliminated
Output:
F*: a new set of functions
Steps:
1. delete all functions ( {f1, f2,⋯ , fk} ) related to Z from F
2. g ←

∏k

i
fi

3. h ←

∑
Z g

4. put h back into F and get a new set of functions F*
5. return F*

Fig. 8  Flowchart of visualizing data stored in the Neo4j graph database
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interface for the CRDM fault diagnosis system are described 
in detail.

3.1  Intent recognition experiment

3.1.1  Dataset

This study collected 753 fault query description texts from 
the CRDM in TMSR-LF1, and the corpus of the constructed 
knowledge graph is mainly derived from the design speci-
fication, operation and maintenance manual, and alarm list. 
The short sentences for training the RBT3-TextCNN model 
were categorized into four classes, namely fault cause, fault 
phenomenon, fault solution, and equipment composition 
relationship. The average length of each sentence was 15.7 
words and the number of total characters was approximately 
11,800. Each sentence in the corpus was manually labeled. 
The dataset was divided into the training set and the test 
set at a ratio of 7:3. The information about fault query text 
distribution is shown in Table 3.

3.1.2  Training details

The configuration parameters of the RBT3 model were 
quoted from the open-source  website1. RBT3 has three hid-
den layers and was derived from the BERT-Base model, 
which has 768 hidden states. Therefore, the input word vec-
tor–matrix dimension was set to 768. The optimizer and the 
maximum length (MaxLen, 50 tokens) were cited from the 
literature [21]. The TextCNN filter size, activation func-
tion, and pooling method were extracted from the litera-
ture [23]. The total number of TextCNN was equal to the 

input word vector–matrix dimension. Besides, another three 
hyper-parameters, including batch size, epochs, and learning 
rate, were generated via fine-tuning based on the compari-
son experiment. As shown in Fig. 9, the RBT3-TextCNN 
model training stopped before 20 epochs. For conservative 
consideration, the initial training epoch was set to 25. The 
batch size was set to 8 for the sake of validation loss and 
validation accuracy. The learning rate was automatically 
adjusted according to the training accuracy. Adam was used 
for optimization with the initial learning rate value of 5e-5 
[21]. The training details are shown in Table 4. The operat-
ing environment was set as an 8-core Intel Core i7-7740 K 
CPU@4.30 GHz and the GPU was Geforce GTX 1080Ti. 
Moreover, the major dependency environments were tensor-
flow-gpu-1.14.0 and keras-2.3.1.

3.1.3  Results

To test the validity of the model with respect to the intention 
recognition using the above-mentioned dataset, we selected 
the TextCNN and RBT3 as the baseline models to compare 

Table 3  Statistics of the dataset 
used in this study

Category Total

Fault cause 255
Fault solution 204
Fault phenomenon 169
Equipment relationship 125

Fig. 9  (Color online) Performance of batch size with different values. a Validation Loss. b Training accuracy. c Validation accuracy

Table 4  Parameters of the RBT3-TextCNN model

1 Resource is available: https:// github. com/ ymcui/ Chine se- BERT- wwm

Parameter names Value

RBT3 hidden layers 3
Word vector–matrix dimension 768
MaxLen 50
Batch size 8
TextCNN filter size 3,4,5
Total number of TextCNN filter 256 × 3
Activation function of TextCNN ReLU
Pooling layer GMP
Optimizer Adam
Learning rate 5 ×  10−5

Epochs 25
Classification number 4

https://github.com/ymcui/Chinese-BERT-wwm
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with RBT3-TextCNN. The experiment involved the use of 
two indicators to evaluate the model performance. Among 
them, the macro average composite index (MaF1) is the 
weighted average of macro accuracy (MaP) and macro aver-
age recall rate (MaR). Considering the uneven distribution 
of various samples under multiple classification issues, the 
accuracy of different models was evaluated based on the 
MaF1 indicator, which is widely adopted to evaluate the 
performance of classification models in machine learning. 
Assuming the dataset can be divided as (C1,C2,… ,Cn) , the 
MaF1 formula is as follows:

where n is the number of categories in the dataset, TP rep-
resents the number of samples correctly predicted in Ci , 
TP + FP represents the number of samples predicted in Ci , 
and TP + FN represents the number of real samples in Ci . 
Hence, Pi (i.e., Precision) reflects the proportion of true pos-
itive samples among the positive samples by the classifier, 
and Ri (i.e., Recall) reflects the proportion of correctly pre-
dicted positive samples in the total positive samples. MaF1 
combines the effects of Pi and Ri . In addition, the total train-
ing time of different models was calculated to evaluate the 
efficiency.

RBT3 is a powerful model for extracting the characteris-
tics of input statements, especially under the circumstance 
of limited training datasets. RBT3 has many parameters, 
and the training time complexity is higher than that of the 
other models. However, TextCNN is proposed as a relatively 
fast-training model, but its performance is subject to limited 
training datasets. In this study, TextCNN and RBT3 were 
chosen as the baseline models, respectively. The small data-
set utilized in this study was derived from the CRDM fault 
corpus of the TMSR-LF1. The results are shown in Table 5. 

(12)MaF1 =
2 ×MaP ×MaR

MaP +MaR
,

(13)MaP =
1

n

n∑

i=1

Pi,

(14)MaR =
1

n

n∑

i=1

Ri,

(15)Pi=
TP

TP + FP
,

(16)Ri=
TP

TP + FN
,

The TextCNN model took more training time to achieve 
convergence than the RBT3 model based on the same batch 
size. The RBT3 model showed a better performance in 
recognizing the CRDM-related fault query intent than the 
TextCNN model. Compared with RBT3 and TextCNN, the 
RBT3-TextCNN had a 1.1% and 2.36% advantage in intent 
recognition performance, respectively, but the total training 
time gap among these three models was not obvious.

3.2  Case study using Bayesian inference

Taking the fault event D “The deviation of No. 3 control rod 
position in TMSR-LF1 exceeds the technique setting value” 
as an example to illustrate the inference based on BN, the 
reasoning result consistently was the posterior probability 
of causes corresponding to the fault. As shown in Fig. 10, 
A1,A2,A3 refer to high-frequency electromagnetic interfer-
ence, sensor improper installation, and sensor breakdown 
respectively, which are independent of each other. There is 
an OR relationship between D and A1,A2,A3 , which are the 
fault symptoms of D. In this study, domain experts directly 
endow the prior probability ( P(A1),P(A2),P(A3) ) of the fault 
symptoms, leak probability ql , and failure probability qi . 
Accordingly, the conditional probabilities ( P(D|A1,A2,A3) ) 
in CPT were calculated by the Leaky Noisy-OR function, 
and the results are shown in Fig. 10.

Given the observed evidence is P(D = T) , the calcula-
tion steps of posterior probability ( P(A1|D = T) ) are shown 
below:

To begin, P(A1|D = T) is defined by the Bayesian 
theorem:

Then, assuming that the elimination order is {A1,A2,A3} , 
the joint probability distribution can be decomposed based 
on the VE algorithm as follows:

(17)P(A1|D = T) =
P(A1,D = T)

P(D = T)

Table 5  Comparison of different models based on the CRDM inten-
tion recognition dataset

Model MaF1 Total 
training 
time (s)

TextCNN 55.75% 70.35
RBT3 96.03% 51.61
RBT3-TextCNN 97.13% 56.92
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where

Thus, three variables {A1,A2,A3} are reduced to one 
target variable {A1}.

Besides, the marginal probability P(D = T) is defined 
as:

(18)

P(A1,D = T) =
∑

A2,A3

P(D = T ,A1,A2,A3)

=
∑

A2

(
∑

A3

P(D = T|A1,A2,A3) ⋅ P(A1,A2,A3)

)

=
∑

A2

(
∑

A3

P(D = T|A1,A2,A3) ⋅ P(A1) ⋅ P(A2) ⋅ P(A3)

)

=
∑

A2

P(A1) ⋅ P(A2)

(
∑

A3

P(A3) ⋅ P(D = T|A1,A2,A3)

)

= P(A1) ⋅
∑

A2

P(A2) ⋅ m(A1,A2)

= P(A1) ⋅ m(A1)

(19)
m(A1,A2) =

(
∑

A3

P(A3) ⋅ P(D = T|A1,A2,A3)

)

m(A1) =
∑

A2

P(A2) ⋅ m(A1,A2)

Therefore,

Indeed, the aforementioned posterior probability cal-
culation can be implemented by a Python library, named 
Pgmpy, which is a pure Python implementation for Bayesian 
Networks with a focus on modularity and extensibility. In 
this study, the Pgmgy Python library was adopted and inte-
grated with the VE algorithm to realize real-time uncertainty 
reasoning.

This case illustrates that the Bayesian diagnostic network 
using the Leaky Noisy-OR function can calculate the condi-
tional probability of exception accurately in reality, accord-
ing to the prior probabilities corresponding to fault symp-
toms. In addition, the fault propagation path can be extracted 
explicitly with the help of the constructed knowledge graph. 
Thus, the nodes associated with the fault were isolated to 
facilitate the usage of the VE algorithm to update the poste-
rior probability of being reliable, which can give sequential 
suggestions for further troubleshooting the fault symptoms.

(20)

P(D = T) =
∑

A1

P(A1,D = T)

=
∑

A1

P(A1) ⋅ m(A1)

(21)P(A1�D = T) =
P(A1) ⋅ m(A1)∑

A1

P(A1) ⋅ m(A1)

Fig. 10  Result of the CPT based on the Leaky Noisy-OR function
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The diagnosis results based on Bayesian inference are pre-
sented in Table 6. In the absence of additional evidence, the 
probabilities of the occurrence of the direct fault symptoms 
of case fault D were updated. The troubleshooting sequence 
of the cause of the failure was as follows: A3 → A2 → A1 . 
This can provide an effective troubleshooting scheme for 
the operator.

3.3  Fault alarm monitoring based on WebSocket

The advantage of the CRDM fault alarm monitoring module 
based on WebSocket is that it can monitor the alarm code 
from the IOC in EPICS through the Web interface quickly. 
The CRDM fault diagnosis system can give a specific 
description and the solution corresponding to the detected 
fault alarm, which can help the operator to grasp the equip-
ment running status efficiently. In this study, the operating 
platform of the CRDM fault diagnosis system was built by 
the Django web framework, which does not support Web-
Socket Protocol directly; thus, the first step was to install the 
module named Channels. The Channels were built around 
a basic low-level spec called asynchronous server gateway 
interface (ASGI), and it can extend the abilities of Django to 
handle WebSockets, chat protocol, and IoT protocols. Then, 

both the creation of a socket for using the WebSocket pro-
tocol and a uniform resource locator (URL) beginning with 
the ws label were required, respectively. The URL was used 
to execute the WebSocket protocol rather than the HTTP 
request processing; therefore, it needs to be defined in the 
ASGI application as the WebSocket URL pattern. The Chan-
nels can be shipped with generic consumers that consolidate 
common functionality, especially for WebSocket handling. 
The WebSocketConsumer was adopted to construct the Web-
Socket server.

The detailed implementation of this module is shown in 
Fig. 11. This socket is responsible for communicating with 
the WebSocket Server, accepting information from the Web-
Socket server, and sending operation requests from the Web 
interface. The basic handlers of the WebSocket server in 
this study include websocket_connect, websocket_receive, 
websocket_disconnect, and neo4j_search. When the connec-
tion between the WebSocket server and the Web interface is 
successful, the WebSocket server will respond to the START 
and END monitoring requests from the Web interface. The 
neo4j_search uses the captured fault alarm code to match the 
related prior knowledge stored in the Neo4j graph database.

Table 6  Result of fault 
diagnosis based on Bayesian 
inference

Fault symptom Description Prior probability Diagnosis result

A1 High-frequency electromagnetic 
interference

0.20 P(A1 = T|D = T) = 0.8193

A2 Sensor improper installation 0.15 P(A2 = T|D = T) = 0.8642

A3 Sensor breakdown 0.11 P(A3 = T|D = T) = 0.9017

Fig. 11  Detailed implementa-
tion process of the CRDM fault 
alarm monitoring module
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3.4  Web interface implementation

The Web interface, designed to prompt the process of 
CRDM fault diagnosis intuitively and effectively, was inte-
grated with fault alarm monitoring, querying fault event 
information, and visualization of the knowledge graph. Fig-
ure 12 shows the preliminary implementation of the Web 
interface in the CRDM fault diagnosis system. The operator 
can open and close the CRDM fault alarm monitoring at any 
time through the Web interface. The fault diagnosis system 
supports the function of natural language input for query-
ing the knowledge about the CRDM fault event knowledge. 
Besides, the Web interface can display the knowledge graph 
corresponding to the CRDM directly. It is convenient for the 
operator to view the information related to the fault event in 
the diagram, including the entities and relationships.

4  Conclusion and future work

The construction of the CRDM fault diagnosis system using 
the knowledge graph is an effective technology for better 
utilizing the CRDM unstructured data generated during 
the processes of CRDM design, manufacturing, and func-
tional testing. This prototype system, combined with fault 

knowledge query, real-time fault alarm monitoring, and fault 
diagnosis based on Bayesian inference, is complete and easy 
to deploy in practice. In general, this work can be regarded 
as a pilot scheme for fault diagnosis based on the knowledge 
graph in the field of NPPs.

Although the prototype of the CRDM fault diagnosis 
system based on the knowledge graph has initially been 
constructed, there are still limitations. At present, the estab-
lished knowledge graph is still in its infancy and only located 
in the key device layer. The stored fault information is sub-
ject to the size of the constructed fault knowledge graph. 
In the next step, the fault knowledge corpus of the CRDM 
needs to be expanded, and fine granularity fault knowledge 
and device mechanism knowledge need to be updated. In 
addition, the prior probabilities of fault symptoms mainly 
rely on the expertise of the domain expert. Its accuracy still 
has limitations as the actual transformation of operation 
conditions. Thereby, future work should focus on making a 
comprehensive test and analysis method in practice and give 
a specific evaluation criterion to optimize the substantial 
probabilities of fault symptoms occurrence.
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Fig. 12  (Color online) Initial implementation of the Web interface in the CRDM fault diagnosis system
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