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Abstract Neutron and gamma ray pulse signal discrimi-

nation technology is an essential part of many modern

scientific fields, such as biology, geology, radiation imag-

ing, and nuclear medicine. Neutrons are always accompa-

nied by gamma rays due to their unique penetration

characteristic; thus, the development of n-c discrimination

methods is especially crucial. In the present study, a novel

n-cdiscrimination method is proposed that implements a

pulse-coupled neural network for n-c discrimination. In

addition, experiments were conducted on the pulse signals

detected by an EJ299-33 plastic scintillator, which is

especially suitable for n-c discrimination. The proposed

method was compared to three other discrimination meth-

ods, including the back-propagation neural network

(BPNN), the fractal spectrum method, and the charge

comparison method, with respect to two aspects: (i) the

figure of merit (FoM) and (ii) discrimination time.

The experimental results showed that the pulse-coupled

neural network (PCNN) has a 26.49% improvement in

FoM-value compared to the charge comparison method, a

72.80% improvement compared to the BPNN, a 66.24%

improvement compared to the fractal spectrum method,

and the second-fastest discrimination time of 2.22 s. In

conclusion, the PCNN treats the input signal as a whole for

analysis and processing, imparting it with an excellent anti-

noise effect and the ability to process the dynamic infor-

mation contained in a pulse signal.

Keywords Pulse-coupled neural network � Charge

comparison � Back-propagation neural network � Fractal

spectrum � n-c discrimination

1 Introduction

In the past 50 years, neutron detection technology has

become highly crucial in many areas, such as irradiation

facilities [1], reactors [2], national defense [3], biology [4],

geology [5], medical science [6], and deep-space explo-

ration [7]. Because of the unique interaction between

neutrons and the surrounding environment, neutrons are

commonly accompanied by gamma rays. However, most

radiation detectors used to detect neutrons are also sensi-

tive to gamma rays, which makes n-c discrimination

especially important. In 1979, Brooks et al. [8] found that

neutrons and gamma rays generated different pulse shapes

when they interacted with organic detectors. Based on this

difference between neutrons and gamma rays, pulse shape

discrimination (PSD) has been studied [9, 10], many novel

detectors with excellent performance have been developed

[11, 12], and the feasibility of plastic scintillators for PSD

applications has been studied [13–15]. Various discrimi-

nation methods and discussions of their performance have

been introduced and Liu et al. presented a fractal spectrum

method in 2016 [16], which has the advantages of anti-

noise and high discrimination but requires a very long

discrimination time. In 2021, Zuo and Liu et al. compared

the performances of three different discrimination methods
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implemented by four different filtering methods [17]; the

intelligent discrimination method they used was the con-

ventional back-propagation neural network (BPNN), which

requires the training and prediction sets to be highly similar

and processes the dynamic information poorly [18].

Generally, all of the commonly used n-c discrimination

methods mentioned above can be categorized into three

categories: time-domain, frequency-domain, and intelligent

methods. Although the discrimination time of the time-

domain methods is relatively short, their discrimination

performances are not satisfactory. In addition, regarding

the frequency-domain and intelligent methods, although

these discrimination methods generally tend to outperform

time-domain methods, most require a significant amount of

matrix operations, i.e., the algorithm implementation could

be relatively cumbersome and time-consuming, which is

not conducive to real-time online analysis. These problems

raise the question of whether it is possible to find an n-c
discrimination method that is capable of processing the

dynamic information contained in the pulse signals, similar

to the frequency-domain and intelligent methods while

having low computational difficulty and maintaining its

time consumption at the same level as the time-domain

methods.

To solve this problem, we present a novel n-c discrim-

ination method, which is based on a pulse-coupled neural

network (PCNN). Experiments were conducted to verify

the performance of the proposed method, in which it was

compared with the BPNN method, fractal spectrum

method, and charge comparison method, with respect to the

figure of merit (FoM) and discrimination time. To retrieve

the data from the n-c superposed field, a plastic scintillator

(EJ299-33) and a digital oscilloscope were used, which was

set with a sampling rate of 1 GS/s, a bandwidth of 200

MHz, and a trigger threshold of 500 mV. The pulse dura-

tion was 160 ns, respecting the Shanon criteria, and the

bandwidth did not bury the useful signal [19]. The exper-

imental results showed that the proposed method signifi-

cantly outperformed the others, with an outstanding FoM-

value and short discrimination time consumption.

The remainder of this paper is organized as follows: the

fundamentals of our proposed method and the other three

discrimination methods are presented in Sect. 2. The

evaluation criteria of n-c discrimination performance are

proposed in Sect. 3. The discrimination results of the dif-

ferent methods are compared and discussed in Sect. 4. The

conclusions of the work are presented in Sect. 5.

2 Fundamentals of discrimination methods

2.1 Pulse-coupled neural network

2.1.1 Origin and mathematical expression

The pulse-coupled neural network (PCNN) was intro-

duced by Eckhorn and Reitboeck et al. in 1990 [20], which

works similarly to real biological neurons, does not require

cumbersome work to train the neural network before using

it, and, hence, does not require the tested data to be highly

similar to the trained data. Based on the neurophysiological

findings of the cat’s primary visual cortex [21, 22], they

developed a neural network whose central novel principle

was abandoning the conventional receptive field and

instead introducing a secondary receptive field, the linking

field. The integrated input of the aforementioned linking

field has an internal cellular circuit, which is capable of

modulating the primary feeding receptive field input,

influencing the generation of pulse bursts. For a signal fed

to the PCNN, which has multiple sampling points—usu-

ally, an image [23, 24] —the unique character of the

linking field makes it possible to capture the dynamic

properties contained in the signal and retrieve the inherent

relationships between neighboring sampling points, which

is especially crucial for processing signals whose dynamic

information is as important as, if not more important than,

the information of each sampling point.

The model of the PCNN incorporates the accepted,

modulation, and pulse generator domains. The accepted

domain has two components: feedback input (FI) and link

input (LI), which together determine the potential of a

neuron. When the potential of a neuron exceeds its

dynamic threshold, it is considered activated. The mathe-

matical formulas of the PCNN are as follows [25]:

Fij n½ � ¼ e�aFFij n� 1½ � þ VF

X

kl

MijklYkl n� 1½ � þ Sij; ð1Þ

Lij n½ � ¼ e�aLLij n� 1½ � þ VL

X

kl

MijklYkl n� 1½ �; ð2Þ

Uij n½ � ¼ Fij n½ � 1 þ bLij n½ �
� �

; ð3Þ

Yij n½ � ¼ 1;Uij n½ �[ hij n½ �
0; otherwise

�
; ð4Þ

hij n½ � ¼ e�ahhij n� 1½ � þ VhYij n� 1½ �; ð5Þ

where Fij and Lij denote the FI and LI of i; jð Þ, respectively,

and coordinate k; lð Þ represents one of the neighboring

neurons of i; jð Þ; n is the iteration count; aF and aL repre-

sent the decay times of FI and LI, respectively; VF and VL

denote the amplification coefficients of FI and LI, respec-

tively; M is the connection weight matrix, which represents

the extent of influence that central neurons received from
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surrounding neurons; Sij denotes the external input; b is a

coefficient influencing the weight of FI and LI in internal

activity threshold Uij; hij represents the dynamic threshold,

and Y is the timing pulse sequence defined by Uij and hij;

Vh and ah denote the amplification coefficient and decay

time of the dynamic threshold hij, respectively. Note that

the connections of the FI should be slower than those of the

LI.

Intuitively, as shown in Fig. 1a, b, the internal activity

threshold Uij has a direct influence on the timing pulse

sequence Y and Y can further influence the dynamic

threshold hij. Meanwhile, the change in the dynamic

threshold hij influences the state of the timing pulse

sequence Y because Y is defined by Uij and hij together

[26]. Regarding the ignition of a group of closely con-

nected neurons, as shown in Fig. 1c, the internal activity

threshold Uij (or could be seen as the total input) and the

dynamic threshold hij are simultaneously augmented by

multiple pulses (external input Sij). After the stimulation of

multiple pulses, the growth rate of Uij begins to slow down

while that of hij remains, which means that hij will even-

tually exceed Uij and reset occurs. For each neuron, the

number of times Uij is greater than hij after stimulation by

multiple pulses is defined as the ignition time, which is the

value of the corresponding location of this neuron in the

ignition map.

2.1.2 Implementation on n-c discrimination

PCNN has a tremendous number of applications in

image processing [26] but has never been used in the PSD

field. Similar to the information contained in an image, the

information contained in a pulse signal also has dynamic

properties, which are essential to the discrimination pro-

cess. The distinguished performance of the PCNN in pro-

cessing dynamic information enables a computer to capture

the dynamic characteristics of pulse signals and perform

outstanding n-c discrimination. Specifically, the major

difference between neutron and gamma ray signals is in the

falling edge and delayed fluorescence and the detection

process of this difference does not only concern the

amplitude of each sampling point of the falling edge and

afterglow effect peak but is also related to the changing

rate of the amplitudes in these locations, which is the

aforementioned dynamic information one wants to capture,

used to discriminate neutron and gamma ray signals.

When the PCNN is applied in neutron and gamma ray

signal processing, the connection weight matrix M is a one-

dimensional vector because the pulse signals of neutrons

and gamma rays are one-dimensional. After implementing

the PCNN on a pulse signal, an ignition map was obtained,

i.e., a matrix with the same dimensions as the original

signal. By summing up part of the ignition map that con-

tains the information of a signal’s peak and falling edge,

the neutrons and gamma rays can be discriminated. Notice

that, unlike other commonly used neural networks, the

PCNN requires no training process before the discrimina-

tion process, making its computational complexity and

time consumption much less than other conventional neural

networks.

Fig. 1 (Color online) Schematic of the pulse-coupled neural network.

a The relationship between Uij, Y, and hij. The internal activity

threshold Uij influences the timing pulse sequence Y and Y can further

influence the dynamic threshold hij; in turn, the changing dynamic

threshold hij influences the state of the timing pulse sequence Y. b
The basic PCNN model. c The ignition situation of a neuron

stimulated by multiple pulses. The internal activity threshold Uij (or

could be seen as the total input) and the dynamic threshold hij are

simultaneously augmented by the multiple pulses (external input Sij).
After stimulation via multiple pulses, the growth rate of Uij begins to

slow while that of hij remains, indicating that hij will eventually

exceed Uij and reset occurs
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As shown in Fig. 3, the difference in the falling edge of

neutrons and gamma rays is well detected by PCNN,

exhibiting significant differences in the ignition maps of

the n-c signals. For the pulse signal of the gamma ray, the

ignition times in the part of the falling edge decrease very

quickly, which is attributed to the fast decay time of

gamma ray pulse signals. Conversely, the declining speed

of the ignition times in the part of the falling edge is

noticeably slower for the neutron signals than that of the

gamma ray pulses and the ignition times surge again when

it comes to the part of delayed fluorescence. Consequently,

by summing the ignition times of the partial ignition map

that incorporates the rising edge, falling edge, and delayed

fluorescence, the n-c pulse signals could be well discrimi-

nated, granted that the sum of ignition times of neutron

signals is distinctly larger than that of gamma ray signals.

2.2 Back-propagation neural network

2.2.1 Model and mathematical expression

The back-propagation neural network (BPNN) is a

product of artificial intelligence research based on the

back-propagation algorithm, which is capable of learning

from the examples fed to it [27]. Specifically, adapting the

connection weights of the hidden neurons of the BPNN can

provide an accurate approximation of the relationship

between the training set and corresponding results; some-

times, even the aforementioned relationship is nonlinear

[28]. With regard to the BPNN, the mathematical rela-

tionships between the inputs and outputs are not specified

and the learning process has two steps: forward propaga-

tion of the signal and backward propagation of error.

Specifically, when the output of the BPNN differentiates

from the expected output, defined by the training set, the

backward propagation stage begins to adjust the inherent

relationships of the hidden node. Mathematically, the hid-

den node output model and output node output model are

denoted as follows:

Oj ¼ h
X

W ij � Xi � qj

� �
; ð6Þ

Yk ¼ h
X

Tjk � Oj � qk

� �
; ð7Þ

where Xi denotes the input of the BPNN, Oj represents the

output of the hidden node, Yk denotes the output of the

BPNN, h is a nonlinear function, W ij and Tjk are weight

matrices that are adjusted during backward propagation,

and q represents the neural unit threshold.

2.2.2 Implementation on n-c discrimination

In recent decades, back-propagation neural networks

have been fully developed to address many civil engi-

neering problems. The final objective of applying n-c dis-

crimination [29, 30] is to determine the difference between

neutron and gamma ray pulse signals, by which an inherent

relationship between a pulse signal and its category can be

generalized and further used to discriminate the n-c pulse

signals fed to the BPNN in the future. To realize the

aforementioned aim, the BPNN needs to be trained first

using two sets of already well-discriminated neutron and

gamma ray pulse signals. In this training step, the BPNN

tries to categorize the received pulse signals (the input

patterns), with the recursive adjustment aided by the cat-

egory results of each pulse signal (the output patterns).

When the neural network has completed the training step, it

can be used to process the test set and discriminate the

pulse signals.

However, there are a few drawbacks of n-c discrimi-

nation based on BPNN. The training and test sets need to

be highly similar and hence these sets cannot use different

filtering methods and the pulse signals of these two sets

need to be retrieved from the same radiation detection

device and come from the same radiation source, with the

same average energy. These disadvantages restrict the

general application of BPNN for n-c discrimination.

2.3 Fractal spectrum

The fractal spectrum method discriminates n-c signals

using fractal dimensions, which are the power spectra of

signals [16]. Specifically, the spectrum of a signal needs to

first be calculated and then the frequency of this signal and

its spectrum should be presented logarithmically, retrieving

an approximate linear relationship between the aforemen-

tioned operation results. Finally, a linear regression anal-

ysis is implemented to obtain regression coefficients, which

can be further used to discriminate the n-c signals. The

mathematical interpretation of the fractal spectrum method

is defined as:

FD kð Þ ¼
XN

j¼1

D jð Þw J�1ð Þ K�1ð Þ
N ; ð8Þ

wN ¼ e �2pið Þ=N ; ð9Þ

PSS ¼
FD kð Þ
�� ��2

N
; ð10Þ

G wð Þ ¼ G w0ð Þ w

w0

� 	�a

; ð11Þ
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where D is the input data, N is the calculation length of the

Fourier transform, FD is the data processed by the discrete

Fourier transform, and Pss represents the power spectrum.

Based on Eqs. (8), (9), and (10), the power spectral density

function can be calculated. Then, the logarithm of this

function is taken and further fitted by formula (11), where

G wð Þ denotes the power spectral density of the signal, w0 is

the reference space frequency, w represents the spatial

frequency, and G w0ð Þ denotes the signal conversion coef-

ficient. Finally, the fractal dimension is defined as follows:

Dim ¼ 2:5 � a: ð12Þ

2.4 Charge comparison

The charge comparison method [31] has become one of

the most commonly used n-c discrimination methods,

which has a fine n-c discrimination performance and con-

sumes little time for simultaneous discrimination process-

ing. With regard to its internal principle, owing to the

different interaction characteristics between neutrons and

gamma rays when they penetrate the plastic scintillator, the

ratios of the slow component’s charge to the total charge

are different for the pulse signals of neutrons and gamma

rays. Based on the aforementioned characteristics, Hawkes

et al. calculated the charge ratio R to discriminate n-c
signals [32], defined as follows:

R ¼ QN

QM

; ð13Þ

where QN and QM represent the summations of the pulse

voltage of the slow component and the whole signal,

respectively. As a result of the longer decay time and

delayed fluorescence of neutrons, the R-value is larger than

that of gamma rays.

2.5 Filtering methods

Inevitably, the pulse signals detected by the radiation

detector always incorporate noise, which makes the dif-

ference between the pulse signals of neutrons and gamma

rays much less significant. Thus, the performance of direct

n-c discrimination is affected by the useless noise, making

the preprocessing of the pulse signals especially important.

There are many preprocessing methods, also called filtering

methods, which are commonly used in radiation detection,

such as the Fourier transform [33–35], wavelet transform

[36–38], Kalman filter [39], and sliding average filter [40].

A discrimination method shows different discrimination

effects with different filtering methods; we have demon-

strated in our previous work [17] that each discrimination

method has the best-matched filtering method, with which

it can achieve optimized performance.

In the present work, the discussion mainly regards the

performance of different discrimination methods; hence,

only one is uniformly used as the filtering method for all

discrimination methods. In this work, the Fourier transform

is selected as the filtering method due to its generally good

performance when coupled with most discrimination

methods [17] and its common application in radiation

detection.

After implementing the Fourier transform, the pulse

signal is transformed from the time-domain to the fre-

quency-domain, where the low-amplitude frequency-do-

main information is the noise component. Filtering is

realized by removing the noise component in the fre-

quency-domain and further taking the inverse Fourier

transform to obtain the pulse signal back to the time-do-

main. As a result of the discrete sampling process being

required when the pulse signals are retrieved from the n-c
superposed field, the pulse signals are discrete; hence, a

discrete Fourier transform (DFT) is required to filter the n-c
pulse signals. The mathematical transform formulas are as

follows:

G uð Þ ¼
XN

x¼1

g xð Þe�i2pN xu ¼
XN

x¼1

g xð Þxxu
N x ¼ 1; 2; . . .;Nð Þ;

ð14Þ

g xð Þ¼ 1

N

XN

x¼1

G uð Þei2pN xu ¼ 1

N

XN

x¼1

G uð Þx�xu
N x¼ 1;2; . . .;Nð Þ;

ð15Þ

where Eq. (14) is the positive transform formula for the

DFT, Eq. (15) is the inverse transform formula for the

DFT, xN ¼ e �2pið Þ=N denotes the frequency, G uð Þ repre-

sents the frequency-domain signal, g xð Þ denotes the time-

domain signal, and N is the length of a signal.

3 Evaluation criteria

To evaluate the performance of different n-c discrimi-

nation methods, objective evaluation criteria need to be

used, which are the discrimination time (the CPU time

required to process all given pulse signals) and the figure of

merit (FoM) in this work. Regarding calculation of the

FoM-value, the histogram of counts of neutrons and

gamma rays must be drawn after the discrimination pro-

cess, as shown in Fig. 2. Then, the mathematical formula

of FoM [41] is given as follows:

FoM ¼ S

FWHMn þ FWHMc
ð16Þ

where S denotes the distance between the neutron count

and gamma ray count peaks, FWHMn and FWHMc are the
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half-height widths of the neutron counting peak and

gamma ray counting peak, respectively, estimated by

Gaussian fitting. A larger FoM-value corresponds to a

better discrimination effect.

4 Experiment

4.1 Parameter settings

4.1.1 PCNN

The parameters of the PCNN are set as: n ¼ 180,

aF ¼ 0:32, aL ¼ 0:356, ah ¼ 0:08, VF ¼ 0:0005,

VL ¼ 0:0005, Vh ¼ 15, and linking weight

M ¼ 0:1409; 0; 0:1409½ �. The n-c signals processed by the

PCNN using the aforementioned parameters are shown in

Fig. 3b. The ignition maps of pulse signals between 10 ns

before the peak and 20 ns after the peak were selected as

the discrimination intervals.

4.1.2 Other methods

To train the BPNN, 11,454 well-discriminated and low-

noise signals were selected as the training set. There are

two hidden layers of the BPNN used in our work, each of

which has nine neurons. The entire training process took

approximately 0.2 s, which is included in the total time

consumption of BPNN in Table 1. With regard to the

fractal spectrum method, the pulse signals from 38 to

130 ns after the peak were chosen as the discrimination

interval. In the charge comparison method, the total com-

ponent is composed of pulse signals between 15 ns before

the peak and 200 ns after the peak and the slow component

incorporates pulse signals between T and 200 ns after the

peak. T is delay time, i.e., a parameter between 155 and

185 ns that affects the FoM-value of the charge compar-

ison method. The abovementioned parameters of these

three methods were optimized in our previous work [17].

4.2 Experimental results and discussions

4.2.1 Pulse signals of neutrons and gamma rays

In this work, a 241Am-Be isotope neutron source was

used to generate the n-c superposed field, with an average

energy of 4.5 MeV. The detection equipment was com-

posed of two parts: an EJ299-33 plastic scintillator and a

digital oscilloscope with a 500 mV trigger threshold (which

corresponds to an energy of approximately 1.6 MeVee,

where 1 MeVee (i.e., MeV electron equivalent) is defined

as the amount of energy converted to light induced by an

electron, which deposits 1 MeV in the scintillator), a 200

MHz bandwidth, and a 1 GS=s sampling rate. Based on this

setup, 9414 pulse signals were retrieved. A comparison of

the normalized neutron and gamma ray signals that we

retrieved is shown in Fig. 3a. It can be seen that the rise

speeds of both signals are similar, while the luminous

attenuation rate of the neutron is noticeably slower than

that of gamma rays; this is attributed to its longer decay

time and delayed fluorescence [42].

4.2.2 Discrimination results

The 9414 n-c pulse signals were filtered by the Fourier

transform [34] and then discriminated by the aforemen-

tioned methods (processed on an AMD R9-5900X CPU);

the results are shown in Figs. 4, 5.

Figure 4 shows the scatter plot of pulse signals dis-

criminated by different methods, where the dots above the

crossing line are discriminated as neutron signals and the

dots below the crossing line are discriminated as gamma

ray signals. For a good discrimination result, the group of

neutron dots and the group of gamma ray dots should be

separated and each group should be distributed as centrally

as possible while maintaining a good Gaussian distribution

at the same time. It can be clearly seen that the PCNN

method noticeably outperforms the others, with a clear gap

between the neutron and gamma ray dots. Meanwhile, both

groups were centrally distributed, with very few dots

located between the two groups or discrete on the outer

sides.

Figure 5 shows the Gaussian fitting of the histogram of

the four methods. The discrimination effect is reflected in

two aspects: (i) the length of the gap between the two peaks

and (ii) the shape of the two peaks. A wider gap corre-

sponds to better discrimination. The narrower and higher

neutron peak (on the right side) and gamma peak (on the

Fig. 2 (Color online) n-c discrimination evaluation criteria. The

evaluation criteria FoM-value is defined by Eq. (14), incorporating

three parts that are marked in this figure (S, FWHMn, and FWHMc). A

greater FoM-value corresponds to a better discrimination effect
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left side) represent better discrimination performance. As

shown in Fig. 5, the fitting curve of the PCNN method

exhibits better performance than that of the other methods,

with a longer distance between neutrons and gamma ray

counting peaks and has narrower and higher n-c counting

peaks.

To quantitatively evaluate the performance of these

methods, the FoM-value of their discrimination results

were calculated, as presented in Table 1, along with the

discrimination time (for the processing time of the 9414

pulse signals) of each method.

Table 1 demonstrates that our proposed method signif-

icantly outperforms the others, with a 26.49% improve-

ment in the FoM-value compared to the charge comparison

method, a 72.80% improvement compared to the BPNN,

and a 66.24% improvement compared to the fractal spec-

trum method. This outstanding discrimination performance

of the proposed method is because the PCNN is not based

on every single point of a fixed vector of the input signal,

as in other methods. In contrast, the PCNN not only

Fig. 3 (Color online) Comparison of normalized n–c pulses and their

ignition maps. a The pulse signals of neutron and gamma ray. b The

ignition maps of neutron and gamma ray, which are obtained by

implementing PCNN on n–c pulse signals. The difference between

neutron and gamma ray in (b) is similar but more distinct than that in

(a), demonstrating that the inherent differences between n–c pulses

are successfully detected by the PCNN

Table 1 Discrimination time

and FoM value of different

discrimination methods

Discrimination method Charge comparison BPNN Fractal spectrum PCNN

Discrimination time 1.96 s 3.65 s 178.01 s 2.22 s

Discrimination effect (FoM) 1.351 0.989 1.028 1.709

Fig. 4 (Color online) Scatter plot of pulse signals discriminated by

different methods. The dots above the crossing line are discriminated

as neutron signals and the dots below the crossing line are

discriminated as gamma ray signals. Well-separated neutron dots

and gamma ray dots indicate a good discrimination effect

Fig. 5 (Color online) Gauss fitting curves for the histogram of four

discrimination methods. A longer distance between neutrons and

gamma ray counting peaks or narrower and higher n–c counting peaks

indicates a better discrimination performance
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considers the amplitude of a point but also the amplitudes

of points before and after this location, i.e., the PCNN

treats the input signal as a whole for analysis and pro-

cessing, imparting an excellent anti-noise effect and the

ability to process the dynamic information contained in a

pulse signal. In addition, the discrimination time of our

proposed method is quite satisfactory (2.22 s), taking

slightly longer than the charge comparison method (1.96 s)

and outperforming the BPNN (3.65 s) and fractal spectrum

method (178.01 s). As a neural network, the PCNN takes

such a short time compared to the BPNN and the fractal

spectrum is attributed to its simple computational com-

plexity, with fewer matrix operations compared to the

fractal spectrum and without the need for a pre-training

step compared to the BPNN. This experimental result

shows that the PCNN has the potential to be implemented

in real-time applications.

5 Conclusion

In this work, a PCNN-based n-c discrimination method

is proposed and compared with the other three methods,

including the BPNN, fractal spectrum method, and charge

comparison method. Our experiment was conducted on the

data of an EJ299-33 plastic scintillator, by which 9414 n-c
pulse signals were retrieved and further processed on an

AMD R9-5900X CPU. The experimental results show that

our proposed method significantly outperforms the others,

with the best FoM-value and short discrimination time.

Specifically, the PCNN demonstrates a 26.49% improve-

ment in the FoM-value compared to the charge comparison

method, a 72.80% improvement compared to the BPNN, a

66.24% improvement compared to the fractal spectrum

method, and the second-fastest discrimination time of

2.22 s. This outstanding performance is because the PCNN

treats the input signal as a whole for analysis and pro-

cessing, imparting an excellent anti-noise effect and the

ability to process the dynamic information contained in a

pulse signal. This short discrimination time of the PCNN is

due to its simple computational complexity, with few

matrix operations and without the need for a pre-training

step. The distinguished n-c discrimination effect of the

PCNN enables broad application prospects in the radiation

detection field and its relatively short discrimination time

makes it potentially useful for real-time discrimination. To

the best of our knowledge, this is the first report on

applying a pulse-coupled neural network for n-c discrimi-

nation. In our future work, we will verify the feasibility of

other improved PCNN models, aiming to achieve an even

better discrimination effect and shorter discrimination

time.
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