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Abstract
In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict 
the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network 
(CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed 
neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the 
CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic 
chain, demonstrating reliable predictive capability.

Keywords Nuclear charge radii · Machine learning · Neural network

1 Introduction

Nuclear charge radius is a fundamental property of the 
nucleus, along with its mass, density, spin, and moments 
[1–3]. This reveals vital information regarding the nuclear 
structure, such as shell closure, halo effect, and electro-
magnetic properties [4–6]. To date, various experimental 
techniques have been employed to measure the nuclear 
radius, including the scattering of high-energy particles in 
the nucleus [7], atomic spectroscopy [8, 9], X-ray spectros-
copy excited by � atoms [10, 11], and isotopic shifts in the 
ultrafine structure of the atomic spectra [12]. The CR2013 
database contains the root mean square (RMS) nuclear 
charge radii for 909 isotopes of 92 elements, from hydrogen 
to curium [13], with neutron numbers ranging from 0 to 152. 

More recently, the measurement of charge radii have been 
extended to nuclei much beyond the �-stability line. The 
latest CR2021 database includes data for 129 charge radii 
of nuclei, with A ≥ 21 and Z ≥ 14 [14].

Numerous theoretical methods have been developed to 
describe and predict charge radii, which can be broadly clas-
sified into three major categories: macroscopic, microscopic, 
and traditionally macroscopic. Microscopic models are 
based on effective and real interactions to study the structure 
and properties of nuclei. Microscopic models include the 
Hartree–Fock–Bogoliubov (HFB) model, relativistic mean-
field (RMF) theory, ab initio calculations, and the cluster 
model [15–19]. For instance, the HFB21 model achieved a 
high level of accuracy for predicting the charge radii, with 
an RMS deviation of 0.027 fm for 782 measured charge radii 
[16]. Traditional macroscopic models rely on phenomeno-
logical laws to describe charge radii [20–22], including the 
A1∕3 and Z1∕3 laws [23–25], where A represents the mass 
number and Z denotes the number of protons. In addition, 
the nuclear charge radii can be accurately predicted using 
the Garvey–Kelson relationship. As such, these relationships 
describe the nuclear charge radii based on the relative posi-
tion of a given nucleus with respect to other known charge 
radii [26–28]. Although phenomenological models can accu-
rately describe the global trends in nuclear charge radii, they 
often struggle to reveal the underlying physical quantities 
within the individual nucleus.
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Machine learning is widely applied in physics owing 
to the availability of large datasets and powerful hardware 
technologies. It has proved to be highly effective in process-
ing complex data, uncovering hidden patterns, and solving 
stochastic processes. In fields such as high-energy physics 
and astrophysics that requires processing enormous amounts 
of data [29–32], machine learning is essential for analyz-
ing the evolution and morphology of galaxies [33–35] and 
extracting information from high-energy reactions [36–39]. 
In nuclear physics, machine learning techniques such as 
artificial neural networks (ANNs) [40, 41], Bayesian neural 
networks (BNNs) [42–45], and radial basis functions (RBFs) 
have been used to improve the accuracy of predictions of 
nuclear properties such as nuclear mass [46–49], charge 
radius [50, 51], and �-decay half-lives [52]. Furthermore, 
convolutional neural networks (CNNs) have been used to 
solve problems pertaining to density functional theory [53, 
54]. Currently, fully connected neural networks are gener-
ally employed to describe the properties of nuclei in nuclear 
physics, with several weights and high computational com-
plexities. To mitigate this complexity, we considered a CNN 
with local connections and weight sharing.

In this paper, we present a novel approach for improving 
the prediction of nuclear charge radii within local charge 
radius (CR) relations by utilizing a CNN. In Sect. 2, we 
provide a brief overview of the theoretical background of 
local CR relations and the principles of CNN. In Sect. 3, 
we describe the proposed methodology for training a CNN 
using existing experimental data on nuclear radii. We present 
the results of our analysis, including the global RMS devia-
tion obtained by the proposed model, and provide relevant 
discussions and predictions based on the findings. Finally, 
the present findings and the conclusions of this study are 
summarized, highlighting the potential of CNN as powerful 
tools for improving the prediction of nuclear charge radii.

2  Theoretical formalism

The Garvey–Kelson relationship was introduced in 1966 as 
a method for predicting the mass of nuclei. Owing to the 
complexity of the Hamiltonian for a multibody system, the 
mass of a nucleus cannot be directly calculated from the first 
principles. Instead, the mass of a given nucleus can be accu-
rately inferred from the masses of its neighboring nuclei [55, 
56]. Similarly, four local CR relations were proposed [27], 
which are based on the charge radii of the four neighboring 
nuclei and are referred to as the 1n − 1p , 1n − 2p , 2n − 1p , 
and 2n − 2p CR relations, respectively.

As reported in Ref. [27], the RMS deviation was 0.0078   fm 
for all nuclei with N, Z ≥ 2. However, the Garvey–Kelson 
relationships are expressed as local formulas. The radii of 
the neighboring nuclei must be known to obtain the radius 
of a specific nucleus. Inspired by Refs. [27, 28], we aimed 
to utilize local CR relationships to characterize the global 
nuclear radius.

When i = 1 and j = 1 , �R1n−1p represents the charge radii 
relationship between the four nearest neighbor nuclei, and 
the following four subrelations can be derived similarly:

Therefore, for i, j = 1, 2, we can utilize 16 subrelations to 
calculate R(N, Z). Subsequently, these 16 subrelations are 
added to obtain a radius relation for the 25 nuclei, and 25 
nuclear charge radii were reshaped into a 5 × 5 matrix with 
the corresponding coefficients. This local relationship is dis-
played in Fig. 1a. Similarly, we considered the local relation 
of the nine nuclear charge radii, as depicted in Fig. 1b.

CNNs are commonly applied in the field of computer 
vision [57]. They can identify local features in images 
using fewer parameters and effectively reduce overfitting. 
By arranging the charge radii from CR2013 for nuclei with 
Z ≥ 18 (Fig. 1), a 79 × 153 nuclear charge radius matrix 
was formed. The coefficient matrix in Fig. 1 is treated as a 
convolutional kernel in CNNs. The sliding of the convolu-
tional kernel across the matrix forms a convolution process 
that is crucial for CNNs. The two-dimensional convolution 
formula is stated as follows:

where O(u, v) denotes the value of the element at coor-
dinates (u, v) in the output matrix and g(i, j) denotes the 
value of the element at coordinates (i, j) in the input matrix. 

(1)

�Rin−jp =0, i, j = 1, 2,

�Rin−jp =R(N, Z) + R(N − i, Z − j)

− R(N − i, Z) − R(N, Z − j).

(2)
�R1n−1p =R(N, Z) + R(N − 1, Z − 1)

− R(N − 1, Z) − R(N, Z − 1),

(3)
�R1n−1p =R(N + 1, Z + 1) + R(N, Z)

− R(N, Z + 1) − R(N + 1, Z),

(4)
�R1n−1p =R(N + 1, Z) + R(N, Z − 1)

− R(N, Z) − R(N + 1, Z − 1),

(5)
�R1n−1p =R(N, Z + 1) + R(N − 1, Z)

− R(N − 1, Z + 1) − R(N, Z).

(6)O(u, v) =
∑

i

∑

j

g(i, j)h(u − i, v − j),
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Similarly, h(u − i, v − j) represents the value of the element 
at the coordinates (u − i, v − j) in the convolution kernel.

The empirical formula developed by Angeli et al. [23, 58]:

where r0 = 0.9561 fm, a = 0.1426, and b = 2.1057. This 
three-parameter formula improves the description of the 
radius of even–even nuclei, and the RMS deviation (the root 
mean square difference between  calculated nuclear charge 
radii and the experimental values) is 0.0385 fm for nuclei 
with A ≥ 39 and Z ≥ 20, which were used as the training 
set. Thus, odd–even staggering crucially affects several iso-
topes. Therefore, by introducing a � term into Eq. (7), we 
can obtain:

where r0 =0.9562 fm, a = 0.1429, b = 2.0825, and c = 
0.0694. The parameters were obtained by fitting the training 

(7)Rc(Z,N,A) = r0

[
1 − a

(
N − Z

A

)
+

b

A

]
A1∕3

,

(8)Rc(Z,N,A) = r0

[
1 − a

(
N − Z

A

)
+

b

A
+

c�

A

]
A1∕3

,

set and the RMS deviation was 0.0385 fm. Similarly, we 
constructed a pairing term for � local relations to describe 
the odd–even staggering effect of the charge radius for the 
nuclei portrayed in Fig. 1c. Considering the characteristics 
of the nuclei near the �-stability line, we added the isospin 
dependence T, which is also referred to as the NP relation 
[45]. � and T, defined as follows:

The structure of the neural network is depicted in Fig. 2. 
The neural network comprised an input layer, a fully con-
nected layer, a convolutional layer, and two output layers. 
The input data are the proton number Z, neutron number N, 
and mass number A of 928 nuclei. The activation function 
from the input layer to the fully connected layer is Mish(x), 
and its formula is expressed as follows:

(9)
� =

(−1)Z + (−1)N

2
,

T =
N − Z

A
.

Fig. 1  (Color online) a Radii relations between 25 neighboring nuclei, visualized as a matrix formed by rearranging the 25 nuclei and convolv-
ing it with the coefficient matrix. b Radii relations between 9 neighboring nuclei. c Odd–even staggering effect across 25 nuclei

Fig. 2  (Color online) Neural network structure used herein. Input data 
comprises proton number Z, mass number A, and neutron number N. 
Neural network has two hidden layers with eight and four neurons, 
respectively. The hidden layer processes the data to output numerous 

nuclear charge radii. The data were reshaped into a matrix and fed 
into the convolutional layer for further processing. After the convolu-
tional layer has processed the data, the final output was obtained. The 
stride was 1 for the convolutional layer
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denotes the output of a fully connected layer. These three 
layers formed a fully connected (FC) net. We obtained a CR 
matrix with 79 rows and 153 columns using FC net. We then 
considered the CR matrix as the input to the convolutional 
layer. As depicted in Fig. 2, the convolutional layer com-
prises four components: convolution of the nuclear radius 
matrix with 5 × 5, 3 × 3 CR relations, 5 × 5 isospin depend-
ence (NP relations), and 5 × 5 delta relations. Thereafter, we 
assigned each component a weight wi and added it to the 
final output of the neural networks. The calculation process 
for the convolutional layer can be expressed as

where R(x) represents the activation function and Oi repre-
sents the convolutional result, as depicted in Eq. (6), and b 
denotes the bias. � and b indicate the training parameters 
of the neural network. Finally, we obtain an output convo-
lutional neural network. The form of the loss function is 
consistent with the RMS deviation ( �).

where RCal.
c

 and RExp.
c  denote the neural network predictions 

and experimental values of the dataset, respectively, and m 
indicates the number of dataset.

3  Results and discussions

Based on local CR relations, we propose a neural network 
containing convolutional layers to study nuclear charge 
radii. We aimed to explore whether local CR relations could 
describe the global nuclear charge radii and their ability to 
predict the charge radii of unknown nuclei.

In this study, datasets were obtained from CR2013 and 
CR2021 [13, 14]. To test the predictive ability of the neural 
networks, we selected 814 charge radii data points with Z ≥ 
20 from CR2013 as the training set and 114 charge radii 
data points from CR2021 as the validation set. The entire 
set included the training and validation sets, which contained 
928 nuclear charge radii.

Similar to alternative neural networks [40, 41, 45], we 
considered the proton number Z, neutron number N, and 
mass number A as inputs for the neural network. Owing to 
the local connection property of the convolutional layer, we 
must generate the nuclear charge radius data through the 
fully connected layer and arrange them into a matrix of 79 
rows and 153 columns. Here, 79 represents the number of 

(10)Mish(x) = x ⋅ tanh(ln(1 + ex)),

(11)f (O) =

4∑

i

R(�iOi) + b,

(12)Loss =

[
m∑

i=1

(
RExp.
c

− RCal.
c

)2
/

m

]1∕2

,

protons, ranging from 18 to 96, and 153 represents the num-
ber of neutrons, ranging from 0 to 152. When the loss value 
of the validation set diminishes to minimum, the generaliza-
tion of the neural network is optimal. Therefore, we compute 
the RMS deviation of the entire set for the CNN. The root 
mean square (RMS) deviations for Eq. (8) and CNN for the 
training, validation, and entire sets are presented in Table 1. 
The CNN yielded an RMS deviation of 0.0195 fm for the 
entire dataset and 0.0156 fm for the validation dataset. Com-
pared to Eq. (8), the entire set is improved by 48% and the 
accuracy of the validation set significantly improved by 53%.

Subsequently, we provide the radius residuals �R between 
the experimental RExp.

c  and the CNN predictions RCal.
c

 , i.e.,

The radius residuals �R of 928 nuclei with proton number 
Z are denoted in Fig. 3. As observed, |�R| ≤ 0.04 fm for the 
validation set. |�R| ≥ 0.06 fm for certain heavy nuclei in the 
training set, especially near the isotopes of Z = 65 and 80. 
In Ref. [59], Fig. 1 displays the significant radii differences 
for isotopes near N = 60, 90, and Z = 80. Near the N = 60 
and 90 regions, the enlarged amplitudes of the radii differ-
ences are attributed to the heavy nucleus with a strong static 
deformation [60–62]. The abnormal radius difference in the 
Z = 80 region is owing to shape staggering, indicating that 
the shape of the heavy nuclei changes from prolate to oblate, 
and thereafter, back to prolate [59, 63, 64].

The RMS radii for calcium isotopes from the CNN, Eq. 
(7), Eq. (8), and experimental data are comparatively pre-
sented in Fig. 4a. The experimental data revealed a signifi-
cant odd–even staggering in the charge radius of the calcium 
isotopes between N = 20 and N = 28, with a pronounced 
shell effect at N = 28. Although Eq. (8) contains the � term, 
it fails to provide a satisfactory description of the experi-
mental data. In addition, the amplitudes of the odd–even 
staggering calculated by the CNN were smaller than those 
of the experimental data. Furthermore, CNN calculations 
indicate an inverted parabolic trend between N = 20 and N = 
28 along the calcium isotopic chain [5, 65, 66]. The current 
predictions for the radii of 38,49,51Ca isotopes yielded results 
were aligned with the available experimental data. The 
results indicate that the CNN is reliable and provides pre-
dictive ability. However, the shell kinks at N = 20 and N = 

(13)�R = RExp.
c

− RCal.
c

.

Table 1  RMS deviation of training set, validation set, and entire set 
for Eq. (8) and the proposed neural network (CNN)

Training set Validation set Entire set

�Eq.(8) 0.0384 0.0332 0.0378
�CNN 0.0201 0.0156 0.0195
�Eq.(8)−�CNN

�Eq.(8)

0.48 0.53 0.48
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28, as demonstrated by the CNN, were insignificant. Cer-
tain studies have employed the macroscopic–microscopic 
method, incorporating shell corrections and quadrupole and 
hexadecapole deformations to achieve shell kinks of calcium 
isotopic chains [5, 65]. As depicted in Fig. 4b, CNN fails to 
accurately reproduce the prominent shell kinks of zirconium 
isotopes at N = 50, suggesting that accounting for the shell 
effect may improve the description of nuclear charge radii.

In Ref. [25], a five-parameter formula was proposed that 
included many physical features such as the shell effect and 
odd–even staggering. The RMS deviation of the charge 
radius for nuclei with A ≥ 40 was 0.023 fm. Recently, Ref. 
[45] has combined the pairing and shell effects using a three-
parameter formula and BNN to describe the nuclear charge 
radius. The RMS deviation is 0.015 fm for the entire set. In 
Ref. [51], the inputs of BNN with four engineered features, 
namely the pairing effect, shell effect, isospin effect, and 
“abnormal,” shape staggering effect. The proposed method 
obtained an RMS deviation of 0.014 fm for the training and 

validation datasets. The BNN outperformed the CNN for 
describing the trend of the nuclear charge radius, indicating 
that the shell and shape staggering effects can considerably 
describe the trend of the nuclear charge radius [5, 58].

The difference between the theoretical results of the CNN 
and the experimental data for all the CR in the entire set is 
shown in Fig. 5. As observed, the residual of the charge 
radius of the nucleus located near the shell is less than 0.04 
fm, implying that the neural network combined with local 
CR relations can accurately describe the nuclear charge 
radius.

4  Summary

We developed a neural network with a convolutional layer 
to analyze the nuclear charge radii of 928 nuclei. We incor-
porated the isospin dependence T and pairing relations � 
into the convolutional layer to account for the physical 

Fig. 3  (Color online) Charge 
radii residuals �R = R

Exp.
c − R

Cal.
c

 
between experimental data and 
CNN of training set (a) and 
validation set (b)

Fig. 4  (Color online) Charge 
radii of a calcium and b 
zirconium isotopes predicted 
by Eqs. (7), Eq. (8), and CNN, 
compared with the experimental 
data
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factors that influence the nuclear charge radius. The net-
work model achieved an RMS deviation of 0.0201 fm for 
nuclei with A ≥ 39 and Z ≥ 20 in the CR2013 database, 
and 0.0156 fm for CR2021 as the validation set. The pro-
posed neural network reproduced the trend of the nuclear 
charge radius, especially the shell effect and odd–even 
staggerings in calcium isotopes.

There are limitations to the application of convolutional 
neural networks in terms of the charge radii of the nuclei. 
Existing experimental data on the nuclear charge radius 
are limited and scattered. Therefore, we generated data 
in fully connected layers, such that the regular convolu-
tional kernel in the convolutional layer acted on the data. 
Presently, the graph convolutional neural networks and 
deformable convolutional kernels have offered significant 
advantages in processing irregular data. Perhaps the graph 
convolutional neural networks can be used to overcome the 
limitations of the nuclear charge radius data.
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