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Abstract
The Cooling Storage Ring external-target experiment (CEE) spectrometer is used to study the nuclear matter created in 
heavy-ion collisions at √s

NN

 =  2.1–2.4 GeV with the aim to reveal the quantum chromodynamics phase structure in the 
high-baryon-density region. Collective flow is considered an effective probe for evaluating the properties of media during 
high-energy nuclear collisions. One of the main functions of the zero-degree calorimeter (ZDC), a subdetector system in the 
CEE, is to determine the reaction plane in heavy-ion collisions. This step is crucial for measuring the collective flow and 
other reaction-plane-related analyses. In this paper, we illustrate the procedures for event plane determination using the ZDC. 
Finally, isospin-dependent quantum molecular dynamics model-based predictions of the rapidity dependence of the directed 
and elliptical flows for p, d, t, 3He, and 4He, produced in 2.1 GeV U + U collisions, are presented.
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1 Introduction

Quantum chromodynamics (QCD) predicts a phase transi-
tion from hadronic to deconfined partonic matter at suffi-
ciently high temperatures and/or densities [1]. Results from 
top RHIC and LHC energies indicate that a new form of 
matter with a low viscosity and high temperature, quark-
gluon plasma (QGP), has been produced [2–7]. Lattice QCD 
calculations predict that the phase transition from hadronic 
matter to the QGP phase is a smooth crossover in the van-
ishing baryon chemical potential ( �B ) region [8]. A first-
order phase transition is expected in a finite baryon chemical 

potential region, and thus, determining the phase structure of 
the QCD is a major research goal in the field of medium- and 
high-energy heavy-ion collisions [9–12].

The Cooling Storage Ring external-target experiment 
(CEE) is a spectrometer that is employed to investigate 
the properties of nuclear matter in the 2.1–2.4 GeV energy 
region in the center-of-mass frame [13]. The CEE primarily 
allows near-full-space measurements of charged particles 
in heavy-ion collisions and provides experimental data for 
studying important scientific problems, such as spin- and 
isospin-related nuclear forces, nuclear matter equations of 
state, and QCD phase structures at high baryon number den-
sities [14–16]. This offers valuable research opportunities for 
QCD phase diagram studies in low-temperature and high-
baryon-density regions.

The event anisotropy of final-state particles relative to the 
reaction plane in momentum space, also known as collective 
flow [17], is important for evaluating the properties of media 
created in heavy-ion collisions. Flow coefficients, such as 
directed flow v1 and elliptical flow v2 , are characterized by 
harmonic coefficients in the Fourier expansion of the azi-
muthal distribution of the final particles with respect to the 
reaction plane. In heavy-ion collisions, the driving force of 
the collective flow is the initial anisotropy in coordinate 
space. It rapidly diminishes as a function of time, and this 
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phenomenon is known as the self-quenching effect. Thus, 
the collective flow is sensitive to the details of the expansion 
of nuclear matter during the early collision stage. The 
directed flow v1 was predicted to be sensitive to the effective 
equation of state [18–20]. The elliptic flow v2 is sensitive to 
the constituent interactions and degrees of freedom [21–23]. 
CEEs can reveal the collective flow in heavy-ion collisions 
at √s

NN
 = 2.1–2.4 GeV. This will help us study the medium 

properties and further search for possible QCD phase transi-
tion signals [24–26]. One of the principle functions of the 
zero-degree calorimeter (ZDC), a subdetector of the CEE, 
is to determine the reaction plane in nuclear-nuclear colli-
sions. The reconstructed reaction plane (usually called the 
event plane) is crucial for many measurements, such as col-
lective flow [27–29], azimuthal HBT [30], and CME-related 
observables [31–34].

In this paper, we introduce the necessary acceptance cor-
rections and calibrations for event plane determination from 
the CEE-ZDC. Furthermore, the isospin-dependent quantum 
molecular dynamics (IQMD) model [35] is used to predict 
collective flow from a typical CEE energy ( √s

NN
 = 2.1 GeV).

2  CEE‑ZDC

Figure 1a shows a schematic of the CEE spectrometer. The 
detector subsystem consists of a superconducting dipole 
magnet used to deflect charged particles; a silicon pixel 
positioning detector (SiPiX, Beam Monitor) to measure 
the position and time of the incident beam as well as the 
primary collision vertex [36]; a time projection chamber 
(TPC) is used to reconstruct particle trajectories and iden-
tify particles [37], and a time-of-flight chamber (TOF) is 
employed to extend particle identification to high momen-
tums ( p > 2 GeV/c). The TOF chamber contains a start-time 
detector (T0) [38], an inner time-of-flight detector (iTOF) 
[39], and an end-cap time-of-flight detector (eTOF) [40]. In 
addition, multi-wire drift chambers (MWDCs) are designed 

to track charged particles at forward rapidity and identify 
particles via momentum measurements [41]. The ZDC is 
used to measure the patterns (deposited energy and incident 
position) of forward-going charged particles emitted from 
nuclear-nuclear collisions [42].

The ZDC is proposed to be installed behind all the other 
subdetectors. The beam direction is defined as the positive 
Zaxis, and the ZDC is located at Z = 295–299 cm, facing 
the original incident beam direction; its geometry is shown 
in Fig. 1b. The ZDC detector cross-plane is a wheel with 
radius R ranging from 5 to 100 cm, and the vacuum pipe 
carrying the nuclear beam passes through the inner hole of 
this ZDC wheel. It consists of 24 sectors that subtend an azi-
muthal angle of 15◦ . Each sector is divided into eight mod-
ules forming eight rings in the full ZDC plane. The sensitive 
volume of the ZDC is composed of a plastic scintillator, and 
the current design uses the BC-408 material from Saint-
Gobain [43]. The photons are produced inside the scintil-
lator through the deposited energy of the incident particles 
and are then transported through a plastic light guide into 
the quartz window of a traditional PMT. ZDC covers the 
pseudo-rapidity range between 1.8 and 4.8, allowing the 
determination of the centrality and event plane in the for-
ward rapidity region and minimizing autocorrelations from 
middle rapidity analyses [17, 44].

3  Event plane determination 
from the CEE‑ZDC

In the study of the event plane, the simulation input of 238 U 
+ 238 U collisions at 500 MeV/u was obtained from the 
IQMD generator [35]. The IQMD model was developed 
based on the quantum molecular dynamics (QMD) model 
[45] considering isospin effects. The detector environment 
was simulated using GEANT4 [46]. One million IQMD 
simulated events were generated in the range of the nuclear 
impact parameter b, which is the transverse distance of the 
projectile from the target nucleus, 0 < b < 10 fm, with 0.1 
million events for each b interval of 1 fm.

The reaction plane in the nucleus-nucleus collision is 
defined by the vector of the impact parameter and beam 
direction. As the impact parameter could not be directly 
measured in the experiment, the reaction plane was esti-
mated using the standard event plane method [17, 47]. The 
first-order harmonic event plane Ψ1 is calculated using the 
event flow vector Q1:
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Fig. 1  (Color online) a Schematic of the CEE detector. b Schematic 
of the ZDC detector
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where the sum exceeds all particles used in the flow vector 
calculation. Quantities �i are the azimuths in the laboratory 
frame. The weight wi is defined by the deposited energy ΔE 
of particle i collected by ZDC detector. As it is related to the 
mass and transverse momentum pT of the particle, whereas 
the pT weight is commonly applied in flow analysis to opti-
mize the event plane resolution [47]. The smearing effect of 
the deposited energy is considered by Eq. 2

where L is the distance from the hit position to the geometric 
center of the sector. h is the charge of the final particle. The 
term 1 − 1

4

(

L

5.5

)2

 is used to describe the resolution of the 
deposited energy at the edge of the sector. and the term 
8 +

2

3
(h − 8) is used to simulate the saturation effect of the 

deposited energy resolution for heavy nuclei ( h ≥ 8 ) [48].
Because the finite multiplicity limits the estimation of the 

reaction plane, it yields a resolution factor R which is defined 
by Eq. 3. In this study, we focus on the first-order harmonic 
event plane because v1 is more significant than higher-order 
flows in the collision energy range covered by CEE.

The magnetic field direction was perpendicular to the beam 
direction at CEE. Thus, the charged particles in the final 
state are deflected by the magnetic field and hit one side of 
the ZDC detector more, as shown in Fig. 2a. Owing to the 
asymmetric ZDC acceptance, the reconstructed event plane 
angle was not isotropic within the laboratory frame, but is 
biased toward the �-azimuth. The acceptance bias caused 
by the magnetic field introduces additional nonphysical 
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anisotropy for the detected collision events, and this effect 
should be removed as it distorts the event plane reconstruc-
tion. Therefore, we introduce a position weight to calibrate 
asymmetric acceptance.

The core idea of the position weight is to correct the 
asymmetric acceptance of the ZDC caused by the magnetic 
field. Owing to the deflection of charged particles in the 
magnetic field, the left side of the ZDC detector receives 
more hits. We assigned a weight P of less than 1 to the hits 
on the left side to correct this effect. The weight was calcu-
lated based on a two-dimensional X–Y hit distribution; as 
defined in Eq. 4 is the ratio of the number of hits on the right 
side to that on the left side. In addition, the deposited energy 
ΔE was used as the weight when calculating the number of 
hits, because it is related to particle mass. It can be observed 
that the acceptance of ZDC is symmetric after applying the 
position weight, as shown in Fig. 2b.

The black line in Fig. 3 shows the event plane distribu-
tion before position weight correction. With an ideal detec-
tor, the event plane distribution should be flat because the 
possible direction of the impact parameter b is random in 
the 2� azimuths of the transverse plane in the laboratory 
frame. It is not flat but peaks around Ψ1 ∼ � owing to the 
asymmetric acceptance of ZDC as discussed above. Cor-
respondingly, one can see that the resolution difference 
between the left (azimuth of the reaction plane: �∕2 to 
3�∕2 ) and right sides ( −�∕2 to �∕2 ) of ZDC is significant, 
as shown in Fig. 4a. After applying the position weights 
defined in Eq. 4: The unflatness of the event plane is sig-
nificantly reduced, as indicated by the red line in Fig.  3. 
The resolution difference between the left and right sides 

(4)
wi = ΔE × P

P = n(−x, y,ΔE)∕n(x, y,ΔE), x < 0

P = 1, x > 0

Fig. 2  (Color online) a Hit 
distribution obtained from the 
ZDC with a collision impact 
parameter of 5 < b < 6 fm. b 
Hit distribution obtained from 
the ZDC after position weight 
correction with a collision 
impact parameter of 5 < b < 6 
fm
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of ZDC is significantly reduced, as shown in Fig. 4b. This 
indicates that the position weight naturally corrected the 
acceptance asymmetry of ZDC.

The event plane distribution is not perfectly flat after 
the position weight, as shown in Fig. 3. Consequently, the 
resolution difference between the left and right sides of 
ZDC was still visible. Therefore, the shift method is used 
to force the event plane to be flat [47]. A shift angle ΔΨ1 
is applied to correct the event plane, and ΔΨ1 is calculated 
event-by-event using the following equation:

where the brackets refer to the average over the events in 
the same centrality bins. Ψ1 is the position-weight-corrected 
event plane azimuth, and Ψ�

1
 is the event plane angle with 

shift calibration. After the shift calibration, a flat event plane 
distribution was achieved, as indicated by the blue line in 
Fig. 3. The resolution between the left and right sides was 
consistent, as shown in Fig. 4c.

In the experiment, the event plane calculated from 
different rapidity windows helped us understand the sys-
tematic uncertainties in the flow measurements. Corre-
spondingly, the event planes from ZDC sub-rings, which 
correspond to different rapidity windows, were studied. 
Figure  5 shows the 1st-order event plane resolution from 
ZDC sub-ring radius 52.5 < R < 76.25 cm without a posi-
tion weight (Fig. 5a), with a position weight (Fig. 5b), and 
with a position weight and shift correction (Fig. 5c). These 
results indicate that the position weight and shift methods 
work well for the event plane calculated by ZDC sub-ring.

After eliminating the resolution difference due to asym-
metric acceptance using the position weight and shift 
methods, the 1st-order event plane resolution from the ZDC 
was calculated using the two-sub-event plane method [17]. 
The full event was divided randomly into two independent 
sub-events with equal tracks, and the event plane resolu-
tion was estimated by correlating the two sub-events as 
defined by Eq. 6:
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Fig. 3  (Color online) Event plane distributions before position weight 
correction (black line), after position weight correction (red line), and 
after position weight + shift corrections (blue line)
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where A and B denote the two sub-events. As � is propor-
tional to the square root of the multiplicity and a full event 
with two particles as sub-events, the full event plane resolu-
tion is obtained as follows:

The resolution of 1st-order event plane as a function of 
impact parameter, determined from the ZDC whole ring, is 
compared with the 1st-order event plane resolution, deter-
mined from the STAR event plane detector, for Au+Au col-
lisions at √s

NN
 = 3.0 GeV [28] in Fig.  6. The event plane 

resolution from CEE-ZDC reached ∼ 90% in the middle-
central collisions ( 4 < b < 7 fm). The resolution of ZDC is 
better in the region of b < 4 fm but worse for b > 4 fm, 
which is probably due to the different sizes of the gold and 
uranium nuclei, experimental acceptance, and detector 
performance.

We also systematically investigated the effects of the 
ZDC detector thickness, hit efficiency, energy resolution, 
and model dependence on the first-order event plane reso-
lution. As shown in Fig. 7, where the solid red dots repre-
sent the default conditions: a ZDC thickness of 4 cm, hit 
efficiency of 100%, and default energy smearing, as shown 
in Eq. 2 and heavy nuclei from IQMD generator de-exci-
tation. The effects of the different variables were investi-
gated individually. The resolution of 1st-order event plane 
decreases slightly as the ZDC detector thickness decreases, 
as shown in Fig. 7a. This is because a more accurate meas-
urement of the deposited energy is achieved with a thicker 
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ZDC. Figure 7b shows the hit efficiency dependence of 1st-
order event plane resolution. The ZDC hit efficiency was 
reduced to 90%, and the event plane resolution remained 
almost unchanged. The effect of ZDC energy resolution is 
investigated by applying additional Gaussian smearing to 
the deposited energy, where Gaussian(1, 0.5) has a center 
value of 1 and width of 0.5, and Gaussian(1, 1) has a center 
value of 1 and width of 1. A smaller Gaussian width indi-
cates a better energy resolution. As the energy resolution 
decreases, the first-order event plane resolution decreases by 
approximately 5–10%, as shown in Fig. 7c. Figure 7d shows 
the relationship between the ZDC event plane resolution 
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weight. c Resolution of 1st order event plane, determined from the 
ZDC sub-ring (radius: 52.5 < R < 76.25 cm) with position weight 
and shift corrections
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and the IQMD heavy nuclei de-excitation, where "out"/"in" 
means the heavy nuclei are de-excitation or not. The resolu-
tion estimated using the IQMD model with heavy nuclei 
de-excitation was slightly higher than IQMD without heavy 
nuclei de-excitation because the multiplicity was higher in 
the former case.

4  Collectivity flow predictions from IQMD 
model

Collective flow is sensitive to the details of the expansion of 
the medium produced during the early collision stage. Flow 
measurements at CEE provide information on the QCD 
phase structure in the high-baryon-density region. Collectiv-
ity flow predictions were presented for a typical CEE based 
on IQMD model. Figure 8 shows v1 and v2 as functions of 
rapidity for protons, deutons, tritons, 3He, and 4 He with an 
impact parameter of 1 < b < 4 fm from IQMD 238 U + 238 U 
collisions at 500 MeV/u ( √s

NN
 = 2.1 GeV). The v1 slope 

values extracted using y = ax + bx3 strongly depend on the 
number of nuclei. The v2 values are negative in the middle 
rapidity owing to the squeeze-out effect; the medium expan-
sion is shadowed by spectator nucleons, and particles are 
preferentially emitted in the direction perpendicular to the 
reaction plane [17], whereas v2 becomes positive in the for-
ward rapidity as the squeeze-out effect becomes weak. Simi-
lar to v1 slope, v2 values showed a strong dependence on the 
number of nuclei.

Figure 9 presents the d(v1∕A)∕dy and v2 for protons, deu-
terons, tritons, 3He, and 4 He determined from HADES [49] 
and STAR [50] experiments together with the IQMD model 

calculations,1 where A denotes the atomic number. v1∕A 
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1 Unlike in the experiment, the centrality here is determined from the 
impact parameter in the model calculations.
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represents the directed flow carried by each nucleon in the 
light nuclei, and the scaling behavior suggests a coalescence 
production mechanism of the light nuclei during heavy-ion 
collisions. v2 is calculated in the rapidity range of 
−0.1 < y < 0 for the STAR experiment and IQMD model 
calculations and −0.05 < y < 0.05 for the HADES experi-
ment. The atomic-number-scaled v1 slope from HADES and 
IQMD showed a decreasing trend with an increase in atomic 
number, whereas the STAR data weakly depend on the 
atomic number in the collisions at √s

NN
 = 3 GeV. The abso-

lute value of v2 from HADES decreased with increasing 
atomic number, whereas the results for STAR and IQMD 
remained almost unchanged with atomic number. This may 
indicate that light nuclei are not purely formed by the coa-
lescence mechanism in Au  +  Au collisions at 
√

s
NN

 = 2.4 GeV, Coalescence was the dominant production 
mechanism for Au+Au √s

NN
 = 3.0 GeV. The production of 

light nuclei in the IQMD model is a mixture of light nuclei 
fragments and the coalescence of nucleons and light nuclei. 
The dominant production mechanism in the IQMD model 
depends on the collision energy and parameter settings. The 
predictions provided by the IQMD model in U + U colli-
sions at √s

NN
 = 2.1 GeV will be validated in future CEEs.

Future measurements of v1 and v2 will help us to examine 
the equation of state of the produced nuclear matter at CEE 

energies [51, 52] and understand the production mechanism 
of light nuclei in the high baryon density region [15, 53–56].

5  Summary

In this paper, we elucidate the procedures for event plane 
determination from the ZDC at the CEE. The calculated 
values determined using the IQMD Monte Carlo event gen-
erator (500 MeV/u 238 U + 238 U) were incorporated as inputs, 
and the detector environment was simulated using GEANT4.

To correct for the bias caused by the dipole magnet, a 
position-dependent weight was introduced to calibrate the 
asymmetric acceptance. After an additional shift correction, 
an outstanding first-order event plane resolution of ∼ 90% 
was obtained for middle-central collisions ( 4 < b < 7 fm). 
Herein, the collective flows v1 and v2 , as functions of rapid-
ity for p, d, t, 3He, and 4 He in middle central collisions, are 
presented based on the IQMD model. These results were 
compared with the experimental data obtained from 2.4 
GeV and 3 GeV Au+Au collisions in the HADES and STAR 
experiments, respectively.

The measurements from the HADES and STAR experi-
ments suggest that coalescence is the dominant production 
mechanism of light nuclei at 3 GeV, whereas light nuclei 
fragmentation and coalescence are both important at 2.4 
GeV. The predictions of the IQMD model at 2.1 GeV will 
be validated in future CEEs.
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