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Abstract
Machine learning-based surrogate models have significant advantages in terms of computing efficiency. In this paper, we 
present a pilot study on fast calibration using machine learning techniques. Technology computer-aided design (TCAD) is a 
powerful simulation tool for electronic devices. This simulation tool has been widely used in the research of radiation effects. 
However, calibration of TCAD models is time-consuming. In this study, we introduce a fast calibration approach for TCAD 
model calibration of metal–oxide–semiconductor field-effect transistors (MOSFETs). This approach utilized a machine 
learning-based surrogate model that was several orders of magnitude faster than the original TCAD simulation. The desired 
calibration results were obtained within several seconds. In this study, a fundamental model containing 26 parameters is 
introduced to represent the typical structure of a MOSFET. Classifications were developed to improve the efficiency of the 
training sample generation. Feature selection techniques were employed to identify important parameters. A surrogate model 
consisting of a classifier and a regressor was built. A calibration procedure based on the surrogate model was proposed and 
tested with three calibration goals. Our work demonstrates the feasibility of machine learning-based fast model calibrations 
for MOSFET. In addition, this study shows that these machine learning techniques learn patterns and correlations from data 
instead of employing domain expertise. This indicates that machine learning could be an alternative research approach to 
complement classical physics-based research.

Keywords Machine learning · Radiation effects · Surrogate model · TCAD model calibration

1 Introduction

Technology computer-aided design (TCAD) is a powerful 
simulation tool for electronic devices. This simulation tool 
has been widely used in the research of radiation effects 
[1–4]. To obtain reliable simulation results, TCAD mod-
els should be calibrated in advance [5–8]. Calibration of 
TCAD models is essential for all simulation studies [9–11]. 

Generally, the structure and doping parameters of TCAD 
models are adjusted to make the simulated current–voltage 
curves consistent with the process design kit (PDK) results, 
while some parameters should be in accordance with the 
PDK information [12–14]. Calibration is time consum-
ing because TCAD simulations are slow and need to be 
performed iteratively. The calibration procedure typically 
requires several weeks or more for manual adjustments.

Evolutionary methods, such as genetic algorithms, are 
possible approaches for automatic calibration [15–18]. How-
ever, such methods require a cold start for each task. Even 
a small change in the calibration goal requires repeating all 
the simulations in the evolution process.

Currently, machine learning methods provide another 
possible approach for fast calibration. Once trained, the 
machine learning-based surrogate model can serve as a 
quick tool for a variety of tasks within its scope. This method 
has been adopted to accelerate time-consuming scientific 
simulations in many research fields, such as partial differen-
tial equation solving [19], nanostructure design [20], thermal 
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metamaterial design [21], and diode failure troubleshooting 
[22]. The trained machine learning-based surrogate models 
are typically several orders of magnitude faster than the orig-
inal scientific simulators. However, to the best of our knowl-
edge, machine learning-based TCAD model calibration for 
metal–oxide–semiconductor field-effect transistors (MOS-
FETs) has not been reported in the literature. We believe that 
machine learning-based fast tools will be widely adopted 
in the future. In this paper, we propose a machine learning 
approach for fast calibration of the TCAD model and provide 
a corresponding calibration tool for MOSFET using Python 
script. MOSFETs are basic components of modern CMOS 
integrated circuits. We took N-type MOSFET (NMOS) as 
an example to demonstrate the potential of machine learning 
methods for fast model calibration.

Three issues need to be addressed when calibrating MOS-
FETs using machine learning approaches. First, the machine 
learning-based surrogate model should be widely applicable. 
Otherwise, every single task requires considerable time to 
build a new model, and the speed advantage is negated. Sec-
ond, the validity of the parameter combinations for MOS-
FETs should be determined to avoid invalid calculations. 
Third, the important MOSFET parameters for calibration 
should be identified and focused on.

In our approach, we developed possible solutions to these 
issues. First, to make the proposed surrogate model more 
widely applicable, a fundamental model of typical planar 
MOSFET was introduced. Second, classifiers were intro-
duced to address the validity issues of the parameter combi-
nations. Finally, important parameters were identified using 
the random forest technique. Their influence on the cur-
rent–voltage curves was analyzed. A calibration tool based 
on Python script was developed and tested with different 
calibration goals for different PDKs. The results indicated 
that the proposed tool could achieve the desired calibration 
parameters within several seconds.

We demonstrated a machine learning approach to TCAD 
model calibration for MOSFET and demonstrated its great 
advantage in terms of speed. We believe that this approach 
will become popular in solving similar problems in the near 
future. In addition, we demonstrated that this data-driven 
approach could be a new method of identifying valid param-
eter combinations and important parameters without the help 
of domain expertise. These results could be referenced for 
further physical analyses.

2  TCAD simulations and datasets

2.1  TCAD model for MOS transistors

A fundamental TCAD model containing 26 parameters was 
introduced to represent the typical structure of MOSFETs. 

As depicted in Fig. 1, a common planar MOSFET includes 
doping distributions in various regions. The calibration 
results of this TCAD model can be referenced for further 
detailed calibrations or directly applied in preliminary 
simulations of radiation effects. The TCAD model includes 
source/drain doping (SD), low-doped drain (LDD), halo 
doping, and channel doping. Specifically, channel doping 
consists of three parts: the doping concentration is homo-
geneous in the middle part and Gaussian in the top and bot-
tom parts. The Gaussian peaks of the top and bottom parts 
are located at their respective boundaries with the middle 
part. Their peak values are equal to the concentration in the 
middle part. The 26 parameters listed in Table 1 are used to 
describe the MOSFET model. These parameters control the 
key dimensions and doping concentration. Six of these can 
be obtained from the PDK information: gateLen, gateWidth, 
tox, sd_peak, sd_depth, and Vdd. During calibration, these 
parameters should be assigned according to the PDK infor-
mation, and the other 20 parameters need to be adjusted.

2.2  TCAD simulations and calibration goals

The physical models listed in Table 2 were used in TCAD 
simulations. The calibration targets were the Id − Vg curves 
provided by the PDK. Figure  2 shows typical Id − Vg 
curves for an NMOS transistor. Vd was set to a low volt-
age (Vd = 0.1 V) and the working voltage. Both the linear 
and semi-logarithmic scales of the curves should be well 
calibrated. This is because the conduction characteristics of 
Id − Vg curves are easy to check on a linear scale, whereas 
the subthreshold characteristics are easy to check on a semi-
log scale.

Three metrics were extracted to describe the Id − Vg 
curves: threshold voltage Vt, transconductance Gm [23], 

Fig. 1  Schematic of the TCAD model to be calibrated
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and subthreshold slope S [24]. The threshold voltage Vt was 
defined using the constant-current method [25]. Specifically, 
in this study, Vt refers to the gate voltage when the drain 
current reaches 1 ×  10–7 A. Transconductance Gm refers 
to the ratio of the drain current to the gate voltage above 
the threshold voltage. Subthreshold slope S is computed as 
(d(logId)∕dVg)

−1
 , which is the reciprocal of the slope of the 

Id–Vg curves in the subthreshold region with the semi-log 

scale. S−1 was computed in this study. The metrics at low 
and working drain voltages Vd were extracted as the calibra-
tion goals.

2.3  Techniques in dataset generation

Generally, the training set is created using simulations with 
randomly generated parameters [20, 21]. However, two prob-
lems should be solved in our case. First, the MOSFET may 
not function when the parameters are randomly generated. 
A large number of invalid samples would waste consider-
able computing time. Second, the number of parameters for 
the MOSFET model is large, indicating that many training 
samples are needed to build a machine learning model.

If the validity of parameter combinations could be 
identified before computation, invalid calculations could 
be avoided. On the other hand, if the importance of every 
parameter could be determined, excluding the unimportant 
parameters could reduce the dimensions of the search space, 
thereby decreasing the number of required training samples.

Generally, device experts are needed to identify the valid-
ity of parameter combinations or key parameters. In this 
study, machine learning methods were utilized instead of 
domain expertise. Specifically, classification models were 
trained to identify the validity of the parameters, and a ran-
dom forest-based feature selection technique was utilized to 
determine the important parameters.

2.3.1  Classification for valid combinations of parameters

A TCAD model with randomly generated parameters may 
not function well or have a threshold voltage outside the 
range of concern, which cannot produce effective samples. 
We randomly generated 1000 TCAD samples and found 
that only 321 samples were valid for creating the dataset. 
This indicates that the efficiency of training sample genera-
tion was only approximately 32%. To improve efficiency, 
we trained the classification models to predict the validity 
of the parameters. The parameters had two possible valid-
ity values: positive and negative. Positive values indicated 
that the related parameters were valid for creating the data-
set. Only the parameters predicted as valid were sent to the 
TCAD simulation.

Five types of popular classifiers were trained and com-
pared using the aforementioned 1000-sample dataset. The 
classifiers include gradient boosting (GB) [26], multilayer 
perceptron (MLP) [27], random forest (RF) [28], support 
vector (SV) [29], and stochastic gradient descent (SGD) 
classifiers [30]. They were implemented using the Scikit-
learn Python library [31], which provides off-the-shelf 
machine learning methods. To make the different features of 
the dataset comparable in value, the logarithm of the doping 
concentrations was used, and each feature was normalized 

Table 1  Parameters of the TCAD model to be calibrated

Number Parameter Description

1 workF Work function of gate material
2 sub_const Doping concentration of substrate
3 well_const Doping concentration of well
4 ch_const Doping concentration of channel middle 

part
5 ch_depth_a Depth of channel top part
6 ch_depth_b Depth of channel bottom part
7 ch_factor_a Gaussian factor of channel top part
8 ch_factor_b Gaussian factor of channel bottom part
9 ch_position_a Beginning position of channel top part
10 ch_depth_const Depth of channel middle part
11 ldd_peak Peak doping concentration of LDD
12 ldd_depth Depth of LDD
13 ldd_factor Gaussian factor of LDD
14 sd_peak Peak doping concentration of source and 

drain
15 sd_depth Depth of source and drain
16 wellc_peak Peak doping concentration of well 

contact
17 halo_peak Peak doping concentration of halo
18 halo_depth Depth of halo
19 halo_factor Gaussian factor of halo
20 halo_position_z Beginning position of halo
21 sd_position X position of source or drain position
22 halo_position_x X position of halo position
23 gateLen Gate length
24 gateWidth Gate width
25 tox Thickness of the gate dielectric
26 Vd Drain voltage

Table 2  Physical models used in TCAD simulations

Physical model Value

Hydrodynamic eTemperature
Mobility DopingDep, HighFieldSatura-

tion, CarrierCarrierScattering, 
Enormal

EffectiveIntrinsicDensity BandGapNarrowing
Recombination SRH, Auger, Avalanche
Temperature 300
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to a mean of 0 and standard deviation of 1. The dataset was 
randomly split into training and test sets in proportions of 
90% and 10%, respectively. Generally, the influence of class 
imbalance starts to become significant when the minority 
class is less than 10% [32, 33]. Therefore, class imbalance 
was not considered in this study.

The confusion matrix, shown in Fig. 3, is widely used to 
assess the performance of classifiers [34]. Some valuable 
metrics can be calculated from the confusion matrix, such 
as receiver operating characteristic (ROC) curves [34] and 
the area under the ROC curve (AUC) [35]. In the confu-
sion matrix, true positives (TPs) refer to correctly predicted 
positives, true negatives (TNs) refer to correctly predicted 
negatives, false positives (FPs) refer to negatives which 
incorrectly classified as positives, and false negatives (FNs) 
refer to positives which incorrectly classified as negatives.

The AUC was used to measure the performance of the 
classifiers. AUC refers to the area under the ROC curve. 
Figure 4 shows the ROC curves and corresponding AUCs 
for different classifiers. Five-fold cross-validation (CV) 
was used to generate the ROC curves. In this technique, the 
training set was randomly divided into five parts. The clas-
sifiers were trained by four parts and iteratively validated 
using the remaining part. The abscissa of the ROC curve is 
the false positive rate, and the ordinate is the true positive 

rate. The true positive rate (also called recall) refers to the 
proportion of correctly predicted positives among all posi-
tives, and is computed as tpr = TP∕(TP + FN) . The false 
positive rate refers to the proportion of incorrectly pre-
dicted negatives among all negatives, which is computed as 
fpr = FP∕(FP + TN) . A good classifier has an ROC curve 
that lies at the upper left of the figure, whereas the dashed 
straight line in Fig. 4 corresponds to the results of a random 
classifier. The AUC is 1 for an ideal classifier and 0.5 for 
a random classifier. The performance of the classifiers is 
influenced by the choice of their hyperparameter values. The 
suitable hyperparameter values vary for different tasks. The 
optimal hyperparameter values for the different classifiers 
after manual tuning are listed in Table 3. Figure 4 shows that 
the GB classifier had the greatest AUC, indicating that it is 
more suitable for our task than the other classifiers.

For a given classifier, the precision can be improved by 
specifying a higher threshold. However, the recall decreases 
simultaneously. Precision refers to the proportion of cor-
rect predictions among all positive predictions, which is 
computed as TP∕(TP + FP) . The recall rate was the same 
as the previously defined true positive rate. The correlation 

Fig. 2  (Color online) Target 
Id − Vg curves calculated by the 
PDK. a Target Id − Vg curves 
on linear scale. b Target Id − Vg 
curves on semi-log scale

Fig. 3  Schematic of confusion matrix

Fig. 4  (Color online) Performance of five classifiers. The dashed line 
corresponds to the results of a random classifier
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between the precision and recall for our GB classifier is 
shown in Fig. 5. The threshold controls the balance between 
the two metrics. High-precision classifiers are helpful in 
improving the efficiency of training sample generation.

A new GB classifier was trained using the entire training 
set and tested using the test set. The confusion matrix for 
the test set is presented in Table 4. A precision of 78.1% and 
recall of 73.5% were achieved.

The final GB classifier was trained using the entire 
1000-sample dataset. We randomly generated 40,000 sam-
ples, and the GB classifier predicted 11,908 samples to be 
valid. We calculated these samples using TCAD and found 
that 9430 samples were valid for creating the dataset. This 
indicates that the efficiency of the generation of samples is 
improved to approximately 79.2%, which is approximately 
equal to the precision of the GB classifier on the test set. The 
slight improvement in precision may be due to an increase 
in the number of training samples. These results show that 

the proposed classifier functions well and saves a significant 
amount of time in generating the dataset.

2.3.2  Feature selection

We utilized a feature selection technique to identify the 
important parameters and decrease the dimensions of the 
TCAD model. The number of parameters for the TCAD 
model was 26, indicating that a large number of training 
samples were required to build a machine learning model. 
Excluding unimportant parameters could reduce the dimen-
sions of the search space, thereby decreasing the required 
number of training samples.

Random forest regression has proven to be useful in fea-
ture selection. This method is helpful in shedding light on 
the important parameters that govern the output [33]. Ran-
dom forest refers to a combination of decision trees. Each 
decision tree in the forest is trained using randomly selected 
subspaces of the feature space [36]. The final prediction 
result is obtained by combining the outputs of every tree in 
the forest [37, 38]. Random forest regression can provide the 
importance of each input feature. The importance of each 
feature is typically measured by its influence on the reduc-
tion of Gini impurity when training the trees [39]. In our 
study, the sensitive parameters of the TCAD model were 
identified using random forest regression. The six param-
eters specified by the PDK were maintained, and the other 
20 parameters were investigated.

The 9430-sample dataset was used to train the RF 
regression models to evaluate the importance of each 
parameter for different regression targets, namely Vt, Gm, 
and S−1. The RF regressions were performed using the 
Scikit-learn Python library. The importance values of each 
parameter obtained for the different regression targets are 
depicted in Figs. 6, 7, 8 and 9. The sum of the importance 
of each regression target is 1. A higher importance value 
indicates that the related parameter is regarded as more 
important by the RF regression. The parameter importance 
values for different regression targets differed slightly. For 
threshold voltage, workF and well_const were the most 
important parameters. For transconductance, well_const 
and ldd_depth were the most important parameters. For 
subthreshold slope, ldd_factor and ldd_depth were the 

Table 3  Optimal hyperparameter values for each classifier. The key 
hyperparameters are listed, whereas the others are equal to the default 
Scikit-learn values

Classifier Hyper parameter Value

GB n_estimators 200
max_depth 4

MLP hidden_layer_size 100
batch_size 16

RF n_estimators 200
SV Kernel RBF

Gamma 0.03
C 2

SGD Alpha 0.03
Penalty L1

Fig. 5  Precision versus recall curve for GB classifier

Table 4  Confusion matrix of GB classifier on the test set. Precision: 
78.1%. Recall: 73.5%

Predicted class True class Total

Positive Negative

Positive 25 7 32
Negative 9 59 68
Total 34 66 100
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most important parameters. The importance of the dif-
ferent regression targets is summarized in Fig.  9. The 
important parameters were approximately in the same 
group for the different regression targets. Therefore, the 
ten most important parameters in Fig. 9, together with six 
PDK-specified parameters, were selected to build the final 
model.

The importance of the parameters obtained by the 
machine learning method is consistent with the results of 
classical semiconductor theory. In semiconductor theory, 
when Vd is small, the threshold voltage Vt can typically be 
approximated as follows [40]:

where �m is the work function of the gate material, which 
is equal to the parameter workF in our model. � is the elec-
tron affinity, Eg is the bandgap, q is the electronic charge, k 
is Boltzmann’s constant, T is the absolute temperature, Na 
is the acceptor impurity density, ni is the intrinsic carrier 
density, �Si is the silicon permittivity, and Cox is the oxide 
capacitance per unit area.

(1)

Vt =�m − � − Eg∕(2q)

+ kT ln
(

Na∕ni
)

∕q

+

√

4�SiNakT ln
(

Na∕ni
)

∕Cox,

Fig. 6  Parameter importance for threshold voltage regression

Fig. 7  Parameter importance for transconductance regression

Fig. 8  Parameter importance for subthreshold slope regression

Fig. 9  (Color online) Comparison of parameter importance for differ-
ent regression targets
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Clearly, the threshold voltage Vt is related to the work 
function of the gate material and the doping density below 
the dielectric. Therefore, it is consistent with classical 
semiconductor theories that the workF and well_const 
parameters are important for controlling the threshold 
voltage Vt.

However, noting that Eq. (1) applies to simple MOSFETs 
without channels or LDD doping, it is difficult to obtain an 
analytical expression for a more complex practical MOS-
FET. For complex structures, theoretical analysis can quali-
tatively identify the parameters that may have an impact; 
however, their impact patterns and importance are difficult 
to determine. As shown in Fig. 1, MOSFETs typically have 
channel, LDD, and halo doping, making it difficult to obtain 
an analytical expression for Vt. Many parameters such as 
well_const, ch_position_a, ch_depth_a, and ch_const influ-
ence the doping distribution below the dielectric. Physics-
based analyses can preliminarily determine whether these 
parameters are related to Vt, but it is difficult to determine 
which parameter is more important or has greater influence.

For transconductance, the RF regression suggested that 
well_const was the most important parameter. A possible 
reason for this is that the transconductance is strongly influ-
enced by the electron mobility [40], and the electron mobil-
ity is influenced by the doping concentration [40, 41].

For the subthreshold slope, the RF regression suggested 
that LDD doping was the most sensitive part. The sub-
threshold slope is associated with the ability of the gate 
voltage to control the surface potential [42]. LDD doping 
has a significant influence on the electric field near the drain 
[43–45]. Ldd_factor and ldd_depth are the most important 
parameters, which is consistent with semiconductor theory. 
In addition, some experimental results have confirmed the 
significant influence of LDD doping on the subthreshold 
slope [46].

The importance of the parameters obtained by the 
machine learning method is consistent with theoretical 
analyses of semiconductors. For complex devices in which 
it is not easy to obtain an analytical expression, machine 
learning methods are helpful in determining the key param-
eters. These results can be used as a reference for further 
physical research.

3  Machine learning‑based calibration 
framework

We built a fast 16-dimension NMOS calibration framework 
using a machine learning-based surrogate model. The sur-
rogate model was several orders of magnitude faster than 
the original TCAD simulation, and the desired calibration 
parameters were obtained within several seconds.

3.1  Surrogate model

As shown in Fig. 10, the proposed surrogate model relates 
the 16-dimension NMOS parameters with the metrics of the 
Id − Vg curves: Vt, Gm, and S−1. Considering that the TCAD 
model may not function with certain parameters, a classifier 
was utilized before the typical regressor to judge whether the 
input parameters were valid. If the input parameters were 
valid, the related metrics were calculated using the regres-
sor. Therefore, for any set of input parameters, the surro-
gate model could predict the related metrics or its failure 
in function.

We built a new 16-dimensional dataset to train the sur-
rogate model. Classification techniques were employed 
again to improve the efficiency of sample generation. This 
procedure is similar to that described in Sect. 2.3.1. First, 
we random generated 1398 samples and found that 685 sam-
ples were valid for creating the dataset, which accounted for 
49.0% of the total calculations. Second, an MLP classifier 
with a hidden_layer_size of 100 and batch_size of 16 was 
trained using the 1398-sample dataset. A precision of 83.3% 
was achieved. Third, we randomly generated 16,200 sam-
ples, and the MLP classifiers predicted 7710 of them to be 
valid. We calculated these samples using TCAD and found 
that 6473 samples were valid. These accounted for 84.0% of 
the total calculations. The results show again that the classi-
fier successfully improved the efficiency of generating valid 
samples and saved time.

The 6473 valid samples, together with the previous 685 
valid samples, were used to train the regressor of the sur-
rogate model. The training was performed using a Python 
library called Keras [47], which was developed for deep 
learning. We built a three-layer artificial neural network 
(ANN). This type of machine learning model has been 
widely adopted in many scientific studies [48–51]. The 
inputs were the 16-dimensional parameters. Considering 
the differences in magnitude between the dimensions, we 
normalized the inputs and outputs. The inputs were nor-
malized using the following two steps: First, the doping 
parameters were processed using a logarithm to limit the 

Fig. 10  Schematic of surrogate model
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changing range. Second, all parameters were normalized to 
a mean of 0 and standard deviation of 1 over the training set. 
The outputs were three neurons, corresponding to Vt, Gm, 
and S−1. Each regression target was normalized between 0 
and 1 using a linear transformation. The activation functions 
were softmax [52], rectified linear unit (ReLU) [53], and 
linear functions for the first to the last layers, respectively. 
128 neurons were used in the first and second layers. The 
loss function was the mean square error. Adam [54] with a 
default learning rate was adopted as the optimizer for train-
ing the ANN. A batch size of 32 was used for stable training 
[55]. 80 training epochs were used in this study. The data-
set was divided into portions of 80% and 20%; 80% of the 
dataset was used to train the ANN and the remaining part 
was used for test. The performance on the training and test 
sets is shown in Fig. 11. The results indicate that the ANN 
could predict the simulation results for the test set. The mean 
absolute errors were 0.016, 0.011, and 0.023 for Vt, Gm, and 
S−1, respectively, in the test set.

The first 1398 calculated samples, together with the 7710 
calculated samples, were used to train the classifier of the 
surrogate model. The dataset was randomly split into train-
ing and test sets in proportions of 80% and 20%, respec-
tively. The training procedure was similar to the previous 
procedures. The ROC curves shown in Fig. 12 suggest that 
the MLP classifier with a hidden_layer_size of 100 and 
batch_size of 16 performed the best. The confusion matrix 
for the test set is presented in Table 5. A precision of 91.0% 
and recall of 93.8% were achieved for the surrogate model.

Fig. 11  (Color online) Performance of the ANN on the training and test sets. The abscissa is the true value of TCAD simulations while the ordi-
nate is the predicted value

Fig. 12  (Color online) ROC curves for the surrogate model

Table 5  Confusion matrix of MLP classifier on the test set. Precision: 
91.0%. Recall: 93.8%

Predicted class True class Total

Positive Negative

Positive 1350 134 1484
Negative 90 248 338
Total 1440 382 1822
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3.2  Calibration procedure

The surrogate model was utilized for NMOS calibration. 
The calibration goal is described by six metrics: Vt, Gm, and 
S−1 at a low voltage (Vd = 0.1 V) and at the working voltage 
(Vd = Vdd). For a perfect set of calibrated NMOS parameters, 
all six metrics should be identical to their target values. The 
dimensions and doping of the NMOS are described by 15 
parameters, with the exception of Vd. The parameter Vd is 
used to describe the drain voltage, which is flexible for a 
given NMOS. Different Vd values are related to different 
metrics of Id − Vg curves for the NMOS. The calibration pro-
cedure is illustrated in Fig. 13. To check the given NMOS 
structure described by the first 15 parameters, Vd was set to 
low and working voltages respectively. The corresponding 
metrics were predicted and their differences from the goals 
were calculated. If the difference was sufficiently small, this 
set of parameters was selected as one calibration result.

When calibrating a PDK, six parameters are specified by 
the PDK, and the other ten parameters are searched to obtain 
Id − Vg curve metrics similar to the goals. The PDK specifies 
the values of gateLen, gateWidth, tox, sd_peak, sd_depth, 
and Vdd. For the other 10 parameters, we randomly generated 
values to search the best parameter values.

A Python script was written to implement the calibra-
tion procedure. First, the script generates a large number of 
random parameters. Second, the script utilizes the surrogate 
models to identify valid sets of parameters and calculate 
their related metrics at low voltage and working voltage. 
Third, the script compares the metrics with the goals and 
computes the differences between them. Considering that the 
surrogate model contains errors in predicting the metrics, the 
script outputs the five most consistent parameters. Finally, 

the output parameters are checked using TCAD calculations. 
The most consistent parameter set was selected as the cali-
bration result.

3.3  Performance

We tested the performance of the calibration method with 
3 PDKs: 28 nm, 40 nm and 65 nm. Different PDKs have 
distinct values of tox, sd_peak, sd_depth, and Vdd. In addi-
tion, each PDK can specify different gateLen and gateWidth 
values within its allowed range. For each PDK, we selected 
one gate length value and one gate width value to generate 
the calibration goal. The PDK information and selected gate 
dimensions are listed in Table 6. As shown in Fig. 14, the 
calibration goals are quite different for the different PDKs.

For each of the calibration goals, the Python script 
required approximately 8 s to find the five most consistent 
parameter sets in 500,000 random inputs. The output param-
eter sets were then sent for TCAD calculations to determine 
the most consistent set. The calibration results are shown in 
Figs. 15, 16. The calibrated parameters are listed in Table 7. 
The calibration results matched the goals, and the param-
eters required by the PDKs were satisfied.

We introduced the root-mean-square error (RMSE) to 
measure the differences between the calibration results and 
goals. The RMSE is computed as

where y and ŷ represent the goal and the calibration results, 
respectively. The ratios of the RMSE relative to the aver-
age value of y are shown in Fig. 17. The relative RMSE of 
S−1 was also computed to evaluate its performance in the 
subthreshold region. Generally, an RMSE of approximately 
10% is sufficient for TCAD model calibration for radia-
tion effects. Our results show the feasibility of fast NMOS 
model calibration with the help of machine learning. The 
TCAD simulation required approximately 600 s to calcu-
late one NMOS case on a personal computer with an Intel 
i7-12700 CPU. Generally, only one case can be calculated 

(2)RMSE =

√

1

N

∑N

i=1

(

yi − ŷi
)2
,

Fig. 13  Proposed calibration procedure

Table 6  Information about PDKs to be calibrated and selected gate 
dimensions

28 nm PDK 40 nm PDK 65 nm PDK

tox (nm) 3 2.42 2.35
sd_peak  (cm−3) 1 ×  1020 1 ×  1020 1 ×  1020

sd_depth (nm) 64 70 115
Vdd (V) 0.9 1.1 1.2
gateLen (nm) 35 40 65
gateWidth (nm) 200 120 200
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at a time. For comparison, 500,000 cases could be evaluated 
in approximately 8 s using the surrogate model on the same 
computer. The proposed method is approximately  107 times 
faster than the original TCAD simulation.

For the 40 nm and 65 nm PDKs, the gate material is 
typically polysilicon. In these cases, the workF of the gate 

material is set to 4.09 eV as an approximation of polysili-
con with N+ doping concentration of 2 ×  1020  cm−3. The 
other nine parameters are searched during calibration. As 
shown in Fig. 18, the Id − Vg curves remained almost the 
same when the gate material changed to the TCAD built in 
polysilicon with arsenic doping of 2 ×  1020  cm−3.

Fig. 14  (Color online) Calibra-
tion goals for different PDKs

Fig. 15  (Color online) Calibra-
tion performance for 3 different 
PDKs
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4  Discussion

The calibration method and relevant Python script pro-
posed here can serve as a fast preliminary calibration tool 
that automatically provides possible calibration results in 
several seconds. The model contains basic types of doping, 
and more detailed calibrations can be performed on this 
basis. The important parameters that govern each metric of 
the Id − Vg curves were identified using the machine learn-
ing methods in Sect. 2.3.2. Thus, small adjustments are 
easy to perform. For the 28 nm PDK, the gate dielectric is 
commonly multilayered. However, the PDK used in this 
study only provides a tox value for reference. If detailed 
structural information is available, the calibration can be 
further improved based on the script outputs.

The key advantage of the proposed approach is that 
once the model is trained, it can continuously provide fast 
calibrations for different goals within its scope. The gen-
eration of training samples is time consuming. However, 
this is a one-time process.

The proposed machine learning methods are data-
driven, learning patterns and correlations from data. In 
this study, the classification of valid parameter sets, impor-
tance of parameters, and correlations between the param-
eters and related metrics were obtained using machine 
learning methods without the need for semiconductor 
expertise. This data-driven approach complements phys-
ics-based research. Classical semiconductor theory is suit-
able for describing relatively simple structures. However, 
it is difficult to obtain analytical expressions for complex 
structures. Machine learning is a data-driven approach. It 
learns the correlations and importance of parameters from 
the data but does not fully understand the physical princi-
ples behind the results. Its results can serve as a reference 
for further physical research.

Fig. 16  (Color online) Schematic of calibrated results. a 28 nm PDK. 
b 40 nm PDK. c 65 nm PDK

Table 7  Calibrated parameters for three different PDKs

28 nm PDK 40 nm PDK 65 nm PDK

workF (eV) 4.20 4.09 4.09
well_const  (cm−3) 4.76 ×  1017 6.89 ×  1017 8.00 ×  1017

ch_const  (cm−3) 2.03 ×  1018 1.88 ×  1018 5.80 ×  1018

ch_depth_a (nm) 3.63 10.67 26.05
ch_position_a (nm) 9.01 0.65 0.93
ldd_peak  (cm−3) 4.82 ×  1019 2.18 ×  1019 4.53 ×  1019

ldd_depth (nm) 17.14 9.18 30.08
ldd_factor 0.05 0.48 0.41
halo_position_z (nm) 19.88 10.85 28.21
sd_position (nm) 9.76 7.36 27.48

Fig. 17  (Color online) Relative RMSEs for three different PDKs

Fig. 18  (Color online) Com-
parison between polysilicon and 
material with workF 4.09 eV for 
the 65 nm MOSFET
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5  Conclusion

We presented a machine learning approach for MOSFET 
model calibration and built a Python script utilizing a 
machine learning-based surrogate model. The surrogate 
model was several orders of magnitude faster than the 
original TCAD simulation, and the desired calibration 
parameters for the NMOS could be obtained in several 
seconds. In this study, a fundamental model containing 
26 parameters was introduced to represent the typical 
structure of a MOSFET. Classifications were developed 
to improve the efficiency of generating training samples by 
predicting the validity of parameter combinations before 
the TCAD calculation. Feature selection techniques were 
used to identify the important parameters and decrease 
the dimensions of the NMOS model. A 16-dimension sur-
rogate model comprising a classifier and regressor was 
built. The surrogate model determines the validity of the 
input parameters and predicts the corresponding thresh-
old voltage, transconductance, and subthreshold slope of 
Id − Vg curve. A calibration procedure was proposed and 
implemented using a Python script. The calibration script 
was tested using three NMOS calibration goals generated 
by different PDKs. The results indicated that the calibrated 
parameter values could be achieved within approximately 
8 s. Our work demonstrates the feasibility of machine 
learning-based fast model calibration. A similar approach 
could be adopted to develop fast calibration tools for other 
devices. In addition, this study shows that these machine 
learning methods learn patterns and correlations from data 
instead of employing domain expertise. This indicates 
that machine learning could be an alternative research 
approach to complement classical physics-based research.
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