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Abstract
This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network 
model for the inversion of complex source distributions, to solve inversion problems involving fixed-source distributions. A 
function is developed to obtain the distribution information of complex source terms from radiation parameters at individual 
sampling points in space. The SDICNN comprises two components: a fully connected network and a convolutional neural 
network. The fully connected network mainly extracts the parameter measurement information from the sampling points, 
whereas the convolutional neural network mainly completes the fine inversion of the source-term distribution. Finally, the 
SDICNN obtains a high-resolution source-term distribution image. In this study, the proposed source-term inversion method 
is evaluated based on typical geometric scenarios. The results show that, unlike the conventional fully connected neural net-
work, the SDICNN model can extract the two-dimensional distribution features of the source terms, and its inversion results 
are better. In addition, the effects of the shielding mechanism and number of sampling points on the inversion process are 
examined. In summary, the result of this study can facilitate the accurate assessment of dose distributions in nuclear facilities.

Keywords Source term inversion · Monte Carlo · Artificial intelligence · Neural network

1 Introduction

“As low as reasonably achievable” is one of the most impor-
tant principles of radiation protection systems. The key idea 
is to rationally use resources to reduce radiation hazard. Eco-
nomic and social factors are considered to reduce the dose 
and risk levels as much as possible. Currently, many nuclear 

facilities are or will be decommissioned, whereas many new 
nuclear facilities, such as nuclear power plants, are under 
construction. The assessment and control of occupational 
exposure dose during the maintenance and decommissioning 
of nuclear facilities are important topics in radiation protec-
tion research. In addition, the radiation dose levels in the 
environment must be assessed accurately to protect people’s 
lives and property.

To evaluate the radiation dose level in the vicinity of 
a nuclear facility, information regarding the source terms 
in the radiation field, such as the energy spectrum, spatial 
distribution, angular distribution, and other parameters, is 
indispensable. However, in actual operation, these param-
eters cannot be accurately measured or calculated. There-
fore, the source-term information must be obtained in space 
via inversion methods, followed by the calculation of radia-
tion dose levels in space using source-term parameters to 
comprehensively evaluate the radiation dose level in the 
entire space as well as to provide reference for reducing the 
radiation dose and risk level to operators. Depending on the 
type of source term to be inverted, source-term inversion 
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algorithms can be classified into source-term inversion under 
nuclear and non-nuclear accident conditions.

In the case of a nuclear accident, the type and amount 
of radioactive material released into the environment must 
be determined. Considerable research has been conducted 
to determine the total amount and composition of radioac-
tive material released into the atmosphere. As presented in 
Table 1, the methods used for source-term inversion can be 
classified into four categories.

(1) The optimal interpolation method [1]. The optimal 
interpolation method, which was first proposed in 1963 
[2], is based on the theory of linear least-squares esti-
mation, the basic principle of which is to minimize the 
absolute error between n observations and theoretical 
calculations based on the sum of squares. Its primary 
advantage is its ability to “automatically” process vari-
ous observations with varying accuracies.

(2) Genetic algorithms [3]. A genetic algorithm is a type 
of combinatorial optimization algorithm. It is a bionic 
algorithm that mainly adheres to the law of “survival 
of the fittest” in biological evolution using a certain 
coding technology to alter a binary string known as 
the chromosome. It begins with an initial population, 
repeats the processes of selection, hybridization, and 
mutation, and then causes the population evolve closer 
to a certain goal to obtain an optimal solution to a prac-
tical problem.

(3) Kalman filters [4, 5]. The Kalman filter is an optimal 
recursive data-processing algorithm that integrates all 
possible observations and statistical characteristics of 
errors in a model as well as observations to estimate a 
specific variable, thus minimizing the statistical error. 
As an important optimal estimation tool, the Kalman 
filter is widely used in various fields, such as inertial 
navigation [6], global positioning systems [7], target 
tracking [8], and weather forecasting [9].

(4) Artificial neural network (ANN) [10]. An ANN is an 
abstract model of the human brain. It is a complex 
network formed by numerous simple processing units 

(or neurons) that are extensively interconnected, thus 
reflecting many basic properties of the human brain. 
A neural network forms a model by learning several 
examples in a process known as “training” and stores 
the knowledge obtained in the connections between 
processing units, i.e., weighted data. ANNs can be 
used to solve a series of problems related to nonlinear 
regression, data prediction, and dynamics. Currently, 
artificial intelligence methods based on neural networks 
are widely used in nuclear facility fault diagnosis [11, 
12], radiation imaging [13, 14], nuclear data meas-
urement [15, 16], computational fluid dynamics [17], 
reactor safety [1], multiphase flow measurement [18], 
radiation field reconstruction [19–21], and other appli-
cations.

This paper mainly discusses the practical application of 
source-term inversion to non-accident situations. Depend-
ing on the type of information, source-term inversion can be 
classified into source-term location inversion and source-
term distribution inversion. The main purpose of source-
term location inversion is to locate unknown source terms 
that are important for determining source-term loss, main-
taining equipment, and decommissioning nuclear facilities. 
A source-term inversion method based on the maximum 
likelihood estimation was proposed by researchers at Nagoya 
University, Japan [22]. The results showed that inversion 
accuracy was significantly affected by the detection parame-
ters and measurement data. Using the angular response prop-
erty of multiple detectors, researchers at South China Uni-
versity proposed a method for locating radioactive sources of 
gamma-rays, which is mainly applied to locate the position 
of a lost source term. Researchers at Tsinghua University 
implemented a source-term inversion algorithm based on 
the least-squares method and performed experiments to 
prove its feasibility; the algorithm is mainly applicable to 
scenarios in which the source-term location is known, but 
the source-term distribution is unknown. Recently, research-
ers at the South China University of Technology proposed a 

Table 1  Comparison of typical source-term inversion algorithms

Method Type of inversion Advantages Disadvantages

Optimal Interpolation Method Source term location inversion Simple application, widely used in the 
field of assimilation

Less effective for complex situations

Genetic Algorithm Source term location inversion Can be combined with other diffusion 
models, which makes it versatile

Relatively weak ability to handle con-
strained optimization

Kalman Filter Source term location inversion The variance matrix is developed 
explicitly

Huge computational overhead

Artificial Neural Network Source term location and 
distribution inversion

Some qualitative data needed in tradi-
tional models are not required

A large amount of reliable training data 
is needed, and its interpretability is 
poor
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radiation-field inversion method based on a grid interpola-
tion function that can restore lost data in a gridded radiation 
field, thereby achieving a certain level of source-term distri-
bution restoration capability [23]. However, because the grid 
difference function method requires several input param-
eters, it presents a few limitations in practical applications.

In practice, operators at nuclear facility sites are aware of 
hotspots in key areas, source-term locations, and quantity 
parameters. In addition, the nuclides of the source term at 
the operation site are unchanged and can be obtained by 
measuring the characteristic energy of the detector. Hence, 
the distribution of the source term can be calculated using 
the measured value of the radiation field dose rate. Subse-
quently, the calculated source-term distribution is used to 
calculate the dose rate at other locations. This method is rel-
atively more accurate and reliable than using data obtained 
via simple interpolation and extrapolation.

The inversion of the source-term distribution from the 
measured dose rate of the radiation field involves solving an 
equation. The accuracy of an equation directly determines 
the accuracy of the results. Having more information regard-
ing parameters other than the source distribution allows one 
to obtain more accurate equations and source distributions. 
Currently, studies related to inversion methods for complex 
source-term distributions are few, and such methods are 
imposed with stringent requirements for spatial dose data 
or exhibit low inversion accuracy, which hinder their port-
ability and accuracy in engineering applications. Therefore, 
a more general, efficient, and accurate inversion model for 
complex source-term distributions must be developed.

To satisfy the requirements above, an ANN is used in 
this study to investigate the problem of inverting a complex 
source-term distribution under non-accident conditions. For 
the inversion of a complex source-term distribution, using 
a neural network can offer three advantages, as follows: (1) 
In an actual operation scenario, the measured values of the 
radiation parameters at each sampling point are the result of 
the combined effect of each discrete position of the source 
term on the position of the sampling point. In addition, this 
result exhibits strong nonlinear characteristics owing to 
the effect of the scattering term in space. Neural networks 
exhibit strong nonlinear mapping capability owing to their 
activation function [24]. Meanwhile, (2) a convolutional 
neural network (CNN) can effectively extract the features 
of the source-term distribution using the receptive field to 
efficiently complete the inversion of the complex source-
term distribution [25, 26]. (3) The training and validation 
process of the neural network is mainly based on data and 
does not require consideration regarding the specific particle 
transport process or complex geometric structure; therefore, 
the network can rapidly perform complex source-term inver-
sion based on the radiation parameter measurements of the 
sampling points.

In summary, based on the ANN method, this study investi-
gates the inversion of complex source-term distribution infor-
mation obtained from the measured values of radiation param-
eters at the sampling points of radiation fields. Subsequently, 
a neural network structure suitable for the inversion of fixed 
complex source-term distributions, named the source distri-
bution inversion convolutional neural network (SDICNN), is 
proposed. In addition, an experimental validation example is 
established with reference to an actual scenario of spent fuel 
storage, and the dataset required for training and validating 
the proposed neural network method is obtained via Monte 
Carlo simulation.

2  Complex source‑term inversion method

2.1  Principle of source‑term inversion

If the source-term geometry is known at the time of inver-
sion, then it can be discretized into several sub-geometries 
comprising a set G = [g1, g2,… , gn] . Each subgeometry com-
prises a corresponding activity distribution, the set of which 
is S = [S1, S2,… , Sn] , and the dose rate in space is expressed 
as follows:

 whereF represents an operator for calculating the dose, 
P = [P1,P2,… ,Pm] ∈ Rm represents a matrix contain-
ing the positions of m sampling points in space, and 
D = [D1,D2,… ,Dm] is the dose vector corresponding to P . 
Subsequently, the process of inverting the source-term activ-
ity distribution can be expressed as follows:

 where I represents the inversion operator and � ∈ Rn rep-
resents the inversion error. The equation above is a general 
expression for the main source-term inversion method. The 
general expression of a neural network with input X and 
output O is

In summary, the general form of the neural network used to 
reconstruct the source term is as follows:

For regression problems, the most typically used loss 
function is the mean squared error (MSE) function, which is 
expressed as follows:

D = F(S,G,P),

S = I(P,G,D) + �,

O = f (X).

S = f (P,G,D) + �.

MSE =
1

n

n
∑

i=1

Si − O2
i
.
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Thus, the method of applying a neural network for source-
term distribution inversion can be described as follows: A pre-
dictive model is constructed using a neural network dedicated 
to minimizing the loss function; subsequently, a model with 
the smallest possible error is determined by training the param-
eters of the network model.

2.2  Method and process

In this study, deep neural networks and Monte Carlo meth-
ods were used to calculate examples with different source-
term parameters to form a dataset for model training and to 
realize source-term inversion. For a series of detectors at 
different positions in space, the two-dimensional distribution 
of the source term must be calculated based on the meas-
ured parameters of the detectors. Conceptually, this process 
comprises two aspects:

(1) Extraction of measurement parameter information for 
the sampling points. The two-dimensional distribution 
information of the source term is encoded using the 
relative magnitudes of the measured parameters at the 
sampling points. Therefore, the measured parameters of 
each sampling point must be considered as independ-
ent variables and information from the relative sizes 
between the sampling points must be extracted.

(2) Reconstruction of the source-term distribution. The 
two-dimensional distribution of the source term is 
reconstructed based on the information extracted in 
the previous step. Multiple solution strategies are avail-
able for calculating the distribution of the measured 
parameters based on any sampling point; therefore, 
this problem is pathological and is an indeterminate 
inverse problem that has no unique solution and typi-
cally requires constraining the solution space using the 
corresponding samples.

In this study, a neural network model dedicated to the 
inversion of complex source-term distributions based on the 

idea above is proposed. The radiation parameters measured 
at n sampling points in the computing space are used to form 
a 1 × n one-dimensional array as the input parameters for 
the neural network, and the sampling points are independ-
ent of each other. Similarly, two-dimensional images of the 
source-term distribution are used as the output parameters of 
the neural network. In this study, the SDICNN is classified 
into two components: a fully connected network and a CNN. 
The extraction of the measurement parameter information 
of the sampling points is mainly completed in the fully 
connected network. The low-resolution source-term distri-
bution parameters are obtained from individual sampling 
points in the radiation field via the fully connected neural 
network. The one-dimensional feature representation out-
put by the fully connected neural network is converted into 
a two-dimensional feature representation to obtain a low-
resolution source term distribution image, which typically 
exhibits 1/2 the resolution of the source term. The CNN 
mainly uses a structure similar to that of the Super Reso-
lution CNN (SRCNN) to complete the fine reconstruction 
of the source-term distribution to obtain a high-resolution 
image from a low-resolution image. The structure of the 
SDICNN is shown in Fig. 1.

In summary, the inversion process for the source-term 
distribution shown in Fig. 2 is as follows:

(1) The number and location of sampling points in space, 
as characteristic variables of the neural network input, 
are determined based on the geometry of the space; 
simultaneously, the resolution of the complex source-
term distribution is determined and its two-dimensional 
image is used as the target signal for the output of the 
network.

(2) A certain amount of data is required to train, test, and 
verify the neural network. Therefore, different source-
term distributions are constructed, and the parameters 
of the sampling points under the source-term distri-
bution condition are used as datasets and calculated 
via Monte Carlo simulation. In addition, the input and 
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Fig. 1  (Color online) Diagram of the SDICNN model
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output of the network are standardized to accelerate the 
convergence of the neural network.

(3) Based on the input and output parameters of the neural 
network combined with the complexity of the actual 
radiation device space, hyperparameter settings such as 
the number of hidden layers and the number of nodes 
of this neural network are determined.

(4) A preprocessed dataset is used to train the neural net-
work. First, the linear layer is trained, and the parame-
ters of the previous linear layer are fixed; subsequently, 
the convolution and deconvolution layers are trained.

(5) Test samples are used to test the source-term inversion 
of the deep neural network model based on a fixed com-
plex source-term inversion.

(6) The fixed complex source term is inverted using the 
deep neural network model obtained after testing.

3  Experiments

3.1  Calculation example

Many nuclear power plants are beginning to use the dry stor-
age of spent fuel, which requires the construction of stor-
age system facilities for the off-stack storage of spent fuel. 
Based on a dry spent fuel storage system as a benchmark, 
we constructed a spent fuel transfer container with a simple 
geometry to test the inversion method described above.

The calculated area in this example was a 
10m × 10m × 10m cube-shaped room. The surrounding 
walls were 0.20-m-thick concrete walls. The entire room was 
partitioned into two areas by a 0.20-m wall. The spent fuel 
transfer container was placed upright inside the room. The 
dimensions of the container were as follows: outer diameter, 
2.34 m; inner diameter, 2.20 m; height, 5.00 m; and bottom 
surface, 0.20 m. The container cover, which was made of 
stainless steel, featured a diameter of 2.40 m and a height 
of 0.20 m. A cylindrical beam with a diameter of 1.00 m 
and a height of 5.80 m was placed above the inner room to 
increase the complexity of the geometry. The positions and 
coordinates of the main geometric components in this study 
are listed in Table 2, and a geometric diagram is shown in 
Fig. 3a.

3.2  Dataset

In this study, the source term refers to a neutron source and 
the energy spectrum is the watt fission spectrum. The outside 
of the container is regarded as the surface source term, which 
is abstracted as a two-dimensional array. The two dimensions 
are the circumferential discrete angle of the source term and 
the axial discrete mesh of the source term. The complex sur-
face source term in the example is discretized into a series of 
subsurface sources, and the particles are emitted uniformly 
outward in the region with a certain intensity, based on the 
assumption that the energy spectrum remains unchanged. In 
the arithmetic example described herein, the entire cylindrical 
container is sampled at 360° and segmented into 30 angles. 
Each angle is segmented into 20 sampling regions. Therefore, 
the number of parameters of the source term to be inverted is 
30 × 20 = 600, as shown in Fig. 3b and c.

Fig. 2  Flowchart for fixed complex source-term inversion

Table 2  Positions and coordinates of main geometric components in examples

No Component name Component coordinates (mm) Component dimensions Material

1 Transfer container (0, 0, 0) Outer diameter: 2.34 m, Inner Diameter: 
2.20 m, Height: 5.00 m

Stainless steel

2 Cylindrical room beam (1000, − 2800, 7000) Diameter: 1.00 m, Height: 5.80 m Stainless steel
3 Surrounding walls – Thickness: 0.20 m Concrete
4 Wall inside the room (− 2800, 3000, 0) Thickness: 0.20 m Stainless 

Steel
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In this study, the abovementioned two-dimensional arrays 
represent the intensity of each source-term discrete mesh. 
The intensity distribution of the source term in the example 
assumes the form of a two-dimensional trigonometric func-
tion. The parameters of the function are randomly sampled, 
including the number of levels, the amplitude, the frequency, 
and the phase of the trigonometric function. The circumfer-
ential and axial coordinates of the source term are substituted 
into the sampled two-dimensional distribution function to 
generate a set of source-term parameters. To enable the inten-
sity distribution of the generated source term change continu-
ously in both the circumferential and axial directions, we use 
binary functions to represent the intensity of the source term in 
each mesh and trigonometric functions with multiple random 
parameters to represent the variation in the intensity of the 
source term, as shown in the formula below:

where F(x, y) represents the source-term intensity of 
meshes x  and y in the circumferential and axial directions, 

F(x, y) =
∑

order

[amp1 ⋅ sin
(

freq1 ⋅ x + �1
)

+ amp2 ⋅ cos
(

freq2 ⋅ x + �2
)

+amp3 ⋅ sin
(

freq3 ⋅ y + �3
)

+ amp4 ⋅ cos
(

freq4 ⋅ y + �4
)

],

respectively; and order, amp, freq, and � are the param-
eters of random sampling. Figure 4 shows examples of the 
two-dimensional distributions of different source terms in 
the dataset.

3.3  Monte Carlo calculation

After a series of source-term distributions are generated 
using the method above, the Monte Carlo method is used 
to calculate the example. The Monte Carlo method can 
be used not only to flexibly model the geometry of source 
terms, but also to accurately describe and analyze their 
distribution, thus rendering it suitable for rapid calcula-
tions and generating datasets required for training [27]. 
To improve the computational efficiency of Monte Carlo 
simulations, Pan [28] from Shanghai Jiao Tong University 
proposed a single-step Monte Carlo criticality algorithm, 
which has been used to generate transplutonium isotopes 
[29]. Similar methods include the DeGVR [30] and PDMC 
methods [31].

Fig. 3  (Color online) Simple 
example of geometric diagram 
(a); complex surface diagram 
of the cross section (b); and 
circumferential angles (c)
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In this study, a Monte Carlo program known as MCShield 
was used for calculations. MCShield is a Monte Carlo pro-
gram developed by the Radiation Protection and Environ-
mental Protection Laboratory of Tsinghua University for 
shielding calculations. The custom source term function 

in MCShield was used in this study to sample the source 
terms. After normalizing the activity of the source particles 
at different locations, energies, and angles, the distribution 
of particles at different locations, energies, and angles was 

Fig. 4  (Color online) Two-dimensional distributions of source terms of different generated datasets
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obtained. Information such as the location, energy, and angle 
of individual source particles was obtained via sampling.

Subsequently, two cases of the same source term with-
out and with a shield were computed separately, and 
10,000 sets of arithmetic cases were computed to create 
a dataset for validating the neural network. In this study, 
the MESH method was used to calculate the neutron flux 
over the entire calculation area. Each MESH measured 
160 mm × 160 mm × 160 mm. In total, 64 × 64 × 64 MESHs 
were configured. After the calculation was completed, the 
MESH parameters at the sampling points were extracted to 
obtain the measured values of the sampling points. In the 
case with shielding, the number of simulated particles was 
1 ×  107, and the average statistical error was approximately 
0.07. In the case without shielding, the number of simu-
lated particles was 1E6, and the average statistical error was 
approximately 0.10. Figure 5 shows the calculation results 
obtained with and without shielding under the same source-
term distribution.

3.4  Inversion calculation results

When training neural networks, normalization preprocessing 
is necessary to transform different feature ranges to achieve 
a mean of 0 and a variance of 1. The source-term parameters 
and flux values are transformed from being several orders 
of magnitude apart to the same order of magnitude. Subse-
quently, different features in the dataset are standardized, 
which allows the network model to learn the fitting rela-
tionship between the two more effectively and accelerate 
convergence. During the training of the neural network in 
this study, the linear layer was trained first. Subsequently, the 
parameters of the previous linear layer were fixed, and the 
convolution and deconvolution layers were trained. During 
this training process, the dropout technique was used to ran-
domly turn off a certain proportion of neurons to avoid over-
fitting the model. The dataset used for the training contained 
10,000 examples, 150 training epochs were performed, and 
the MSE was selected as the loss function. In this example, 
different numbers of sampling points were selected on the 
wall around the spent fuel transfer container to simulate the 

Fig. 5  (Color online) Calculation results for radiation field with shielding
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actual detector arrangement. Owing to the different numbers 
of sampling points, the training times differed slightly. The 
time for one training epoch was 20–50 s, and the total train-
ing time was 1–2 h.

A total of 96 sampling points were selected around the 
side of the container as the input to each neural network, 
where the circumferential direction was segmented into 

30 angles, and the axial direction was segmented into 20 
regions. The fully connected neural network in the SDICNN 
contained three hidden layers, and the CNN in the SDICNN 
model performed two convolution and one upsampling oper-
ation, followed by two additional convolutional operations. 
Figure 7a shows the inversion results of the SDICNN model 
for source terms outside the dataset.

Fig. 6  (Color online) Schematic 
diagram of conventional fully 
connected neural network
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4  Analysis of neural network 
hyperparameters

First, to verify the effectiveness of the SDICNN model, an 
experiment was performed to compare between a fully con-
nected neural network model and the proposed SDICNN 
model. Second, to investigate the effects of different factors 
on the source-inversion performance of the SDICNN model, 
the relevant parameters were modified, and the correspond-
ing network training results obtained from the source-inver-
sion process were compared.

4.1  Comparison of neural network inversion results

In this study, an experiment was performed to compare 
between a fully connected neural network model and the 
SDICNN model to verify the effectiveness of the neural net-
work method for source-term inversion and to analyze the 
performance of the SDICNN model by comparing it with 
that of a conventional fully connected neural network model. 
To be consistent with the SDICNN model, a typical fully 
connected neural network containing three hidden layers was 
used, whose structure is the same as that of the fully con-
nected network of the SDICNN model, as shown in Fig. 6.

For comparison purposes, all results are presented herein 
based on the same validation case. Different methods (such 
as the fully connected neural network and SDICNN model) 
and parameters (such as different numbers of sampling 
points) were used for source inversion, and the results are 
presented. Figures 7 and 8 show the inversion results of 
the fully connected neural network and SDICNN model 
for source terms outside the same dataset and the relative 
deviations from the actual source terms. The average abso-
lute error of the source-term inversion results of the fully 

connected neural network was 87.41%, whereas that of the 
SDICNN model was 22.16%.

The prediction results of the fully connected neural net-
work and SDICNN model indicate that the fully connected 
network could not learn the two-dimensional features of the 
source-term distribution. This is mainly because a fully con-
nected neural network regards the source terms as separate 
discrete points, whereas in reality, the source-term distribu-
tion is a continuous two-dimensional distribution with dif-
ferent continuous features in both the circumferential and 
axial directions. By contrast, the SDICNN model can extract 
features of the source-term distribution more effectively and 
obtain better inversion results.

Figure 9 shows a comparison of the MSEs induced in 
the validation set during the training processes of the two 
networks. The fully connected neural network indicated a 
lower convergence speed and a plateau phase during the 
source-term inversion, whereas the SDICNN model exhib-
ited a higher convergence speed and achieved better training 
results for the validation set.

Figure 10 shows the flux values calculated for 96 sam-
pling points based on the source-term prediction results of 
the fully connected network and SDICNN model, as well 
as the relative deviations from the flux values under the 
conditions of the actual source terms. The average relative 
deviation under the predicted source term conditions of the 
fully connected network was 16.29%, whereas the average 
relative deviation under the predicted source-term conditions 
of the SDICNN model was 14.92%. The SDICNN model 
performed slightly better than the fully connected network 
in predicting the source-term results.

These results indicate that the fully connected neural net-
work is unsuitable for this application. Compared with the 
conventional fully connected neural network, the SDICNN 
model achieves better source prediction performance on the 

Fig. 8  (Color online) Relative errors of a fully connected neural network and b SDICNN model
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Fig. 9  (Color online) MSEs 
obtained on validation set by 
two neural network methods
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Fig. 10  (Color online) a Flux 
results and b relative flux devia-
tions obtained for 96 sampling 
points by two neural networks

(a)

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Actual Value

Fully Connected Neural Network Prediction Value

SDICNN Neural Network Prediction Value

(b)

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Fully Connected Neural Network Error SDICNN Neural Network Error



 Y.-S. Hao et al.

1 3

195 Page 12 of 18

same dataset and is more suitable for predicting two-dimen-
sional complex source distributions.

4.2  Shielding effect

In the calculation space, a significant amount of shielding 
effects (e.g., beams and walls in the calculation example pre-
sented herein) are typically observed, which can reduce the 
dose level and significantly increase the complexity of the 
calculation space as scattering terms are added. Therefore, 
the effect of shielding in the radiation field on the source-
term inversion effect must be investigated. This section is 
based on the SDICNN model, where 30 sampling points at 
fixed positions on the wall are selected as network inputs. 
Based on two cases, i.e., with and without shielding (in 
the Monte Carlo simulation, the shielding material is set 
as air), the model was trained and tested. Figures 11 and 
12 show the source-term inversion results obtained for the 
cases with and without shielding, and the relative devia-
tions from the actual source-term distribution. The results 
of the two schemes show minimal difference between the 

inversion results obtained for the source terms with and 
without shielding.

In the cases without and with shielding, the average abso-
lute errors of the source-term inversion were 78.82% and 
64.73%, respectively. Based on the relative deviation results, 
the extreme errors of the inversion results obtained with and 
without shielding were relatively low and relatively high, 
respectively. In general, the inversion results obtained with 
shielding were slightly better than those obtained without 
shielding.

Figure  13 shows a comparison of the MSE values 
obtained on the verification set when network training was 
performed under two conditions: with and without shield-
ing. As shown, on the same dataset, the network converged 
faster without shielding and achieved better training results 
on the validation set.

The inversion results obtained for the source terms with 
and without shielding exhibited mutual advantages and dis-
advantages. This is primarily because of the fewer number 
of scattering terms under the condition without shielding, 
and that the training process of the network model is rela-
tively simple, thus resulting in a faster convergence process. 

Fig. 11  (Color online) Comparison of predicted (left) and actual (right) distributions for source terms (a) with and (b) without shielding
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However, without shielding, the same sampling point posi-
tion is not shielded from the source, and the radiation param-
eters at the sampling point position may not accurately 
reflect the source-term distribution.

4.3  Number of sampling points

To investigate the effect of the number of sampling points 
on the source-term inversion results based on the SDICNN 
model, we selected 10 and 40 sampling points at fixed posi-
tions on the wall as network inputs, conducted network 
model training, and then conducted tests. Figures 14 and 
15 show the source-term inversion results obtained based 
on 10 and 40 sampling points and the relative deviations 
from the actual values. The average absolute errors of the 
source-item inversion results based on 10 and 40 sampling 
points were 66.44% and 39.35%, respectively. By combining 
the source-term inversion results of the 30 and 96 sampling 
points (as shown in Figs. 11 and 7, respectively), we clearly 

observed that the source-term inversion results improved 
gradually as the number of sampling points increased. A 
greater number of sampling points corresponded to more 
source-term information obtained and thus better source-
term inversion results.

Figure 16 shows a comparison of the MSE values induced 
on the verification set when the network was trained based 
on 10, 30, 40, and 96 sampling points. As shown, on the 
same dataset, an increase in the number of sampling points 
resulted in a higher network convergence speed, and the 
training results obtained on the verification set were better.

Figure 17 shows the flux values calculated at the sam-
pling points based on the prediction results of networks 
trained on data from 10 and 40 sampling points and the 
relative deviations from the flux values under the actual 
source-term conditions. The average relative deviations 
of the neural network based on 10 and 40 sampling points 
were 25.27% and 25.64%, respectively; as mentioned 
above, the average relative deviation of the neural network 

Fig. 12  (Color online) Relative error a with and b without shielding

Fig. 13  (Color online) MSEs 
obtained on validation set under 
two shielding conditions
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based on 96 sampling points was 14.92%. In general, the 
prediction results became increasingly accurate as the 
number of sampling points increased.

4.4  Discussion

The effectiveness of the SDICNN model for the source-term 
distribution inversion problem was verified comparing it 

Fig. 14  (Color online) Predicted source distribution (left) with a 10 and b 40 sampling points and actual source distribution (right)

Fig. 15  (Color online) Relative deviation with a 10 and b 40 sampling points
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with the fully connected neural network. In addition, the 
effects of factors such as shielding and the number of sam-
pling points on the source-term inversion effect were veri-
fied and tested. The findings obtained were as follows: (1) 
The effect of shielding on source-term inversion results 

must be considered comprehensively. Shielding introduces 
complexity into the radiation field, which is not conducive 
to the neural network training. However, without shielding, 
the distances between the sampling points and source term 
must increase accordingly, and the resolution ability of the 

Fig. 16  (Color online) MSEs 
obtained on validation set with 
different numbers of sampling 
points
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Fig. 17  (Color online) Flux 
results and relative deviations 
obtained with a 10 and b 40 
sampling points
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radiation parameters at the sampling point positions for the 
source-term distribution is weakened. Therefore, in practi-
cal applications, the effects of shielding and sampling point 
positions on inversion must be considered comprehensively. 
(2) The test results show that more sampling points in the 
space yield a better source-term inversion effect. Therefore, 
in actual application scenarios, the number of sampling 
points should be increased as much as possible to achieve 
better results. Based on the verification results above, the 
proposed SDICNN model offers two advantages:

(1) In the radiation protection scenarios, the radiation 
parameter measurement values at each sampling point 
are the result of the comprehensive effect of various 
positions in the fixed complex source, and they exhibit 
strong nonlinear characteristics. The proposed network 
model is based on a deep neural network and is trained 
on a dataset composed of different source scenarios 
without considering specific nonlinear processes and 
complex geometric structures. It can perform complex 
source inversions rapidly based on the radiation param-
eter values measured at the sampling points.

(2) The proposed neural network is classified into a fully 
connected neural network and a CNN. The fully con-
nected neural network obtains a higher-dimensional 
feature representation of the input, whereas a CNN 
performs convolution and deconvolution operations 
to extract more spatial information and high-level 
features. This network design structure combines the 
advantages of both types of neural networks, thus effec-
tively solving the source-inversion problem with a cer-
tain degree of flexibility.

5  Conclusion

To address the inverse problem of fixed source distributions, 
we herein proposed a deep neural network model named the 
SDICNN for the inversion of complex source distributions. 
The model successfully obtained fixed complex-source dis-
tribution information from individual radiation parameters 
at sampling points in space. The SDICNN comprises two 
components: a fully connected network and a CNN. The 
fully connected network extracts the measurement param-
eter information at the sampling points and obtains low-
resolution source distribution parameters from individual 
sampling points in the radiation field via a fully connected 
neural network. Subsequently, the one-dimensional feature 
representation output by the fully connected neural network 
is converted into a two-dimensional feature representation, 
thereby yielding a low-resolution source distribution image. 
The CNN primarily completes fine inversion of the source 

distribution and obtains high-resolution source distribution 
images from low-resolution images.

In this study, the source-term inversion method was tested 
based on typical geometric scenarios in practical operations. 
The results showed that compared with the conventional 
fully connected neural network, based on the same datasets, 
the SDICNN successfully extracted the two-dimensional 
features of the source-term distribution; additionally, it con-
verged faster and achieved better inversion results. In addi-
tion, we verified and evaluated the effects of factors such as 
shielding and the number of sampling points on the source-
term inversion effect. Using more sampling points resulted 
in a better source-term inversion effect. Although shielding 
introduced significant complexity to the radiation field, its 
effect on the source-term inversion results must be compre-
hensively considered, in addition to the distance between the 
sampling point and source term.

The results of this study can serve as reference for moni-
toring a source’s status in radiation-field operation environ-
ments and for accurately evaluating the spatial dose distri-
bution in nuclear facilities. Additionally, the findings of this 
study may contribute to the accurate assessment of the radia-
tion protection level of on-site personnel in nuclear facilities, 
thereby reducing the amount of radiation exposed to work-
ers and decreasing the collective dose during the lifecycle 
of the nuclear facility. In addition, owing to the increasing 
prevalence of machine-learning methods in recent years, 
neural networks for source inversion may become the next 
research focus in the field of radiation protection because of 
their potential significance for optimizing real-world radia-
tion sites.

Future endeavors pertaining to this study may include the 
following: (1) identifying more effective source-inversion 
neural network models, determining more effective neural 
network structures, and further improving the accuracy of 
source parameter inversion. (2) Establishing more complex 
geometric models based on real-world application scenarios 
to validate neural network models and investigating source-
inversion methods under complex geometric conditions. (3) 
Combining other measurable radiation field parameters to 
invert the source parameters. In this study, source inversion 
was considered based only on individual sampling points, 
which implies insufficient input information. (4) Exploring 
inversion methods for time-series source data. In this study, 
source inversion was examined only under fixed source dis-
tribution conditions, i.e., without considering variations in 
the source parameters over time. (5) Currently, the dose is a 
physical quantity measured by many typical detectors, and 
the source term used in the calculation example presented 
herein is a neutron source. In the future, we will attempt to 
identify methods that allow us perform source-term distri-
bution inversion based on the gamma radiation field and 
dose measurement values. (6) Investigating the effect of 
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the sampling point location distribution on the source-term 
inversion performance for a specified number of sampling 
points to design a reasonable distribution of sampling point 
locations.
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