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Abstract
The estimation of model parameters is an important subject in engineering. In this area of work, the prevailing approach 
is to estimate or calculate these as deterministic parameters. In this study, we consider the model parameters from the 
perspective of random variables and describe the general form of the parameter distribution inference problem. Under this 
framework, we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo 
(MCMC) method. Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed 
method converges quickly and can estimate parameters effectively, even for several correlated parameters simultaneously. 
Our experiments include cases of engineering software calls, demonstrating that the method can be applied to engineering, 
such as nuclear reactor engineering.

Keywords Model parameters · Bayesian inference · Frequency distribution · Ensemble Bayesian method · KL divergence

1 Introduction

With the depth of its intellectual development, mathematical 
modeling and simulation (M &S) have emerged as a power‑
ful tool that promises to revolutionize engineering and sci‑
ence. M &S are expected to describe a system, on the basis 
of which further research can be conducted. For example, 
the Consortium for the Advanced Simulation of Light Water 
Reactors (CASL) was established by the US Department of 
Energy (DOE) in 2010, with the goal of providing M &S 
capabilities that support and accelerate the improvement 
of nuclear energy’s economic competitiveness and ensure 
nuclear safety [1].

Numerical simulations can differ significantly from 
experimental observations, and minimizing this difference 
has always been an important topic in engineering practice 
[2–4]. The difference between model and reality is particu‑
larly true in reactor physics, primarily for the following 
reasons: 

(1) The complex nature of nuclear phenomena. A nuclear 
system may involve neutron transport, thermal hydrau‑
lics, and fuel performance, among others, which makes 
it difficult to accurately model the neutronic behavior. 
Theoretically, this can be well described by the Boltz‑
mann transport equation, incorporating coefficients 
derived from various experimentally evaluated neutron 
interaction cross sections. These cross sections have 
strong, discontinuous behavior in space due to material 
heterogeneities and extreme variations with energy due 
to resonance phenomena associated with compound 
nucleus formation [5–7].

(2) Inaccuracy of input parameters. A model requires input 
design data or explanatory data, such as geometry, 
composition, and control parameters, and input model 
parameters, including physical constants such as inter‑
action cross sections and material thermal and mechan‑
ical properties. Particularly, the two-level approach 
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(i.e., a micro-level model for determining macro cross 
sections and a macro-level model for determining the 
final response of interests) for reactor physics calcu‑
lation may lead inexact input parameters [5–7]. As a 
consequence, inexact parameters will clearly cause 
inaccurate outputs.

With the advancement of science and computational power, 
we can probably make fewer simplifications and approxi‑
mations in our models, resulting to reduced differences, 
whereas the resources spent must still be considered for 
economic reasons. As we reduce this difference, it becomes 
increasingly dominated by the input parameters.

In particular, nuclear data, such as neutron cross sec‑
tions and resonance parameters, are evaluated by combin‑
ing approximated nuclear physics and experimental obser‑
vations, which have epistemic and aleatoric uncertainties. 
These uncertainties then propagate through a neutronics 
model, creating differences and uncertainties [8]. It is easy 
to imagine that it would be the best option if we were able 
to re‑evaluate the nuclear data. Unfortunately, the nuclear 
evaluation process is significantly long and costly, making 
it unrealistic. For example, [9] estimated the cost of a single 
new observation of a nuclear datum at 400,000 US dollars.

The uncertainty of the input parameters causes uncertain 
behavior in the model, resulting to the development of three 
fields in statistics: uncertainty quantification (UQ), sensitiv‑
ity analysis (SA), and data assimilation (DA) [10]. They are 
beneficial in engineering design, with the potential to sig‑
nificantly reduce unnecessary costs. For example, knowledge 
of the sensitivity of attributes has been used to reduce costly 
design margins.

Data assimilation assimilates previous experience or 
experimental observations to reduce the differences and 
uncertainties in model predictions. It was first proposed 
in the field of meteorology and is widely used to predict 
meteorological phenomena, such as hurricanes [11]. Data 
assimilation methods can be roughly divided into two cat‑
egories: variational data assimilation [12–14] and sequen‑
tial data assimilation [15–17], whereas some hybrid data 
assimilation techniques have emerged [18–20]. Bayesian 
approaches to data assimilation were established after [21, 
22] and [23] provided an overview of the Bayesian per‑
spective, discussing some approaches from this perspec‑
tive. In neutronics, data assimilation is primarily used to 
predict the bias of critical systems [24], thereby reducing 
the uncertainty of advanced reactor designs [25]. In recent 
years, research interest in data assimilation in neutrons has 
mainly focused on the adjustment of nuclear data, which 
could establish cross‑correlations between nuclear data or 
nuclides that are traditionally unavailable [26, 27]. In addi‑
tion, new methods based on stochastic sampling of input 
parameters have been proposed, such as MOCABA [28] and 

BMC [29]. In addition, D. Siefman showed that these two 
methods yield similar results to each other, as well as the 
traditional method known as generalized linear least squares 
(GLLS) [30]. Readers can refer to [31–33] for the Bayesian 
applications in thermal hydraulics.

The method proposed in this study involves sampling the 
probability distribution, and the method we used is MCMC. 
The MCMC method began with the Metropolis method pro‑
posed by Metropolis et al. in 1953 and was extended by 
W.K. Hastings in 1970. In 1984, S. Geman et al. demon‑
strated how the method, known as the Gibbs sampler, can be 
adapted to high‑dimensional problems that arise in Bayesian 
statistics [34]. In 1987, S. Duane et al. combined MCMC 
and molecular dynamics methods, known as the hybrid 
Monte Carlo method or Hamiltonian Monte Carlo (HMC) 
[35]. Later, scholars developed a series of improved HMC, 
such as the No‑U‑Turn Sampler (NUTS) [36] and stochastic 
gradient Langevin dynamics (SGLD) [37], based on HMC.

Although the Bayesian approach has been widely used in 
data assimilation, there is still a lack of research on the selec‑
tion of a prior distribution, which is generally selected as 
the probability representation that exists before experimental 
observations, and is probably unsatisfactory. It is evident 
that the prior distribution affects the results of the method. 
This study aims to complete this task, namely, to provide the 
initial input of prior distributions for classical data assimila‑
tion methods. As an example, recent work [38] has applied 
the Bayesian neural network method to predict the beta 
decay lifetime of atomic nuclei and their uncertainty, which 
improves learning accuracy and uses prior distributions of 
parameters; therefore, it may be useful to consider using the 
method proposed in this work once before the algorithm to 
improve the performance of the method with more accu‑
rate prior distributions. Moreover, most data assimilation 
methods only provide point estimations for parameters; how‑
ever, what if nuclear data are actually probabilistic? In fact, 
certain parameters in our understanding resemble distribu‑
tions or random variables, such as the number of neutrons 
released per fission and the change in the concentration of 
nuclear fuel over a short period due to fuel depletion. We 
attempt to fill this research gap and take the first step in this 
distribution inference. Therefore, we propose an ensemble 
Bayesian method. It is also worth mentioning the following: 

(1) The proposed method is simulation‑based. As strate‑
gies for the design and evaluation of complex nuclear 
systems have shifted from heavy reliance on expensive 
experimental validation to highly accurate numerical 
simulations, more attention has been paid to simula‑
tion‑based approaches. This allows our method to play 
a role in guiding the overall system design as well 
as optimizing the setup of the validating benchmark 
experiments.
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(2) The proposed method has good compatibility. Because 
there are numerous legacy codes used extensively in the 
design process, they are expected to persist as integral 
parts of nuclear design calculations. Our method can 
be incorporated in the legacy codes, making it tractable 
for nuclear systems simulation.

The remainder of this paper is organized as follows. In 
Sect. 2, we describe the parameter distribution inference 
problem in a general manner and describe the correspond‑
ing experiment. In Sect. 3, we first introduce the Bayesian 
inference and Metropolis–Hastings algorithms, followed by 
the core algorithm. In Sect. 4, we analyze the convergence 
of the method and illustrate a series of numerical tests on 
the proposed method, including a finite cylindrical reactor 
and the 2D IAEA benchmark problem. Finally, we provide 
a brief conclusion in the last section.

2  Problem description

When modeling a physical phenomenon, the first step is to 
introduce reliable theories, such as conservation laws and 
transport theory. In nuclear reactor physics, there are many 
classic models such as the finite cylindrical reactor and the 
2D IAEA benchmark problem, which will also be presented 
in Sect. 4. However, it is worth emphasizing that the method 
proposed in this study is valid, regardless of the theories 
introduced. For clarity, we skip this step and consider the 
following general system:

where x ∈ D ⊂ R
3 is a spatial vector, y ∈ R is an observ‑

able physical quantity, z ∈ R is an observation of y possibly 
with noise � , and � = (�(1),⋯ ,�(n))T are input parameters 
of the model.

f represents the intrinsic functional relationship between 
these variables, which models the corresponding physical 
phenomenon. � ∼ N(0, �2) is the zero‑mean Gaussian rela‑
tive noise that models the observation noise.

2.1  Perspective of random variables

In current research, most data assimilation methods only 
provide point estimations for the model parameters � . 
However, certain parameters in our understanding resem‑
ble distributions or random variables, such as the num‑
ber of neutrons released per fission and the change in the 
concentration of nuclear fuel over a short period due to 
fuel depletion. Here, we deal with the latter case. Thus, 
� = �(�) = (�(1)(�),⋯ ,�(n)(�))T is assumed to be an 

(1)

{
y(x,�) = f (x,�)

z(x,�) = y(x,�)(1 + �)
,

n‑dimensional parameter vector dependent on another 
parameter � . The general parameter � ∈ [a, b] might be time 
t or burnup Bu. We have the following theorem [39]: Let 
� ∼ U[a, b] and � ∶ R → R

n be a Borel measurable map; 
then, �(�) is an n‑dimensional random vector.

In the following discussion, we are concerned with the 
overall statistical regularity of the parameter � within the 
interval [a, b] and will always treat � as a random vector 
with an unknown real joint distribution. Our goal is to esti‑
mate this distribution using observational data.

2.2  Experimental setup

To achieve our goal, a special type of experimental setup 
was designed to obtain the observational data required by 
the method proposed in the next section. Specifically, we 
obtained data in the following manner: 

 (i) Choose m number of spatial positions: x1,⋯ , xm ∈ D 
and set S = {x1,⋯ , xm} to be the set of sensor nodes.

 (ii) Re p e a t e d ly  s a m p l e  k  n u m b e r  o f  �  : 
a ≤ 𝜃1 < ⋯ < 𝜃k ≤ b in the uniform distribution 
U(a, b). As an example, if � means time t, �1,⋯ , �k 
are the observation times.

 (iii) At each �j , m number of observations z1,j,⋯ , zm,j are 
obtained through the sensors.

Because we used m sensors, we obtained the following m 
observation equations:

where �i is the zero‑mean Gaussian relative noise of the ith 
sensor. It is natural to assume that they are independent and 
have a common distribution, i.e., �i ∼ N(0, �2),∀i = 1,⋯ ,m.

After the previous steps, we obtain m × k observations 
zi(xi,�(�j)), i = 1,⋯ ,m;j = 1,⋯ , k . For simplicity, we use 
the notation

3  Ensemble Bayesian method

The Bayesian approach has been widely used in data assim‑
ilation and is the method proposed in this study. Subse‑
quently, we provide an overview of the Bayesian inference.

3.1  Bayesian inference

Let X and Y be the quantities of interest that cannot and 
can be directly observed, respectively, of which the observa‑
tions make up our data. From the perspective of Bayesian 

(2)zi(x,�) = y(x,�)(1 + �i), i = 1,⋯ ,m.

(3)zi,j = zi(xi,�(�j)).
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inference, there exists a joint probability distribution of all 
unobserved and observable quantities denoted by p(x, y). 
Bayesian inference determines the conditional distribution 
of the unobserved quantities of interest given the observa‑
tion data. This is formally accomplished by applying the 
Bayesian formula:

provided 0 < p(y) < +∞ is a normalized constant.
We obtain the formula for the posterior distribution, 

which we will sample later. Some commonly used sampling 
algorithms include adaptive rejection sampling. However, 
in many cases, there is no analytical solution for the poste‑
rior formula, which makes it difficult to use many sampling 
algorithms. To overcome this problem, we introduce the 
MCMC method, which is a technique for sampling prob‑
ability distributions. Here, we consider the Metropolis–Hast‑
ing algorithm, which has unique advantages for posterior 
distribution sampling.

3.2  Metropolis–Hastings algorithm

The Classical Metropolis–Hastings algorithm [40] was first 
proposed in the early 1950 s and extended by W.K. Hastings 
in 1970. As the posterior distribution that we derive later is 
continuous, the algorithm for the continuous state space is 
given below.

Let � be a probability density function that must be sam‑
pled and �s be the value of � in s. Let T be a transition func‑
tion for any irreducible Markov chain with the same state 
space as � and Ts,t be the value of a conditional density func‑
tion in t given condition s. Furthermore, we assumed that we 
knew how to sample from T. Chain T is used as a proposal 

(4)p(x||y) =
p(y||x)p(x)

p(y)
,

chain, generating the elements of a sequence that the algo‑
rithm decides whether to accept. The steps of the Metropo‑
lis–Hastings algorithm are presented in Algorithm 1.

For the Metropolis–Hastings proposal distribution, if we 
choose a symmetric distribution with the current state as the 
symmetric point, such as a uniform distribution on an inter‑
val of length two centered at the current state, or a Gaussian 
distribution with the expectation of the current state, we can 
simplify Eq. (1) to:

because T��,�u−1
= T�u−1,��

 . This is the main reason why this 
algorithm works well with a posterior distribution. Next, we 
use the Gaussian distribution with the expectation of the 
current state as the proposal distribution.

When � is the joint probability density function of multi‑
variate random variables, the proposed chain T from which 
we know how to sample, is difficult to obtain. In this case, 
the single‑component Metropolis–Hastings algorithm is 
used. We denote T (v)

s
 as a one‑dimensional proposal distri‑

bution given condition s, satisfying

where ∫
t(v)

Ts,[s(1),⋯,s(v−1),t(v),s(v+1),⋯,s(n)]Tdt
(v) is the normalized 

constant that makes T (v)
s

 a probability density, and the sin‑
gle‑component Metropolis–Hastings algorithm is shown in 
Algorithm 2.

(5)� = min

{
1,

���

��u−1

}
,

(6)T (v)
s
(t(v)) =

Ts,[s(1),⋯,s(v−1),t(v),s(v+1),⋯,s(n)]T

∫
t(v)

Ts,[s(1),⋯,s(v−1),t(v),s(v+1),⋯,s(n)]Tdt
(v)

Algorithm 1  Metropolis–Hastings algorithm Algorithm 2  Single‑component Metropolis–Hastings algorithm
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In reality, we can directly choose a one‑dimensional 
distribution from which we know how to sample, such as 
uniform or Gaussian distributions, as a one‑dimensional pro‑
posal distribution T (v)

s
 . This avoids the difficulty of sampling 

from a multidimensional distribution.

3.3  Ensemble Bayesian algorithm

In this section, we derive the core method combined with 
the experimental setup (observation data) in Sect. 2.2, which 
includes three steps: Bayesian inference, Metropolis–Hast‑
ings sampling, and performance evaluation.

3.3.1  Bayesian inference

Because �1,⋯ , �k are samples of � ∼ U[a, b] , it is easy to 
verify that �(�1),⋯ ,�(�k) are also samples of �(�) . In view 
of this, our basic idea is to estimate the distribution of � by 
aggregating the individual estimates of �(�j), j = 1,⋯ , k.

For each �j , there are several observations z1,j,⋯ , zm,j . 
Denote �j = �(�j) be the value to be estimated. From the 
perspective of Bayesian inference and the Bayesian formula, 
we have

where �(�j) denotes the prior distribution. In an experi‑
ment, the prior distribution is usually given by assump‑
tions or guesses or evaluated by traditional methods with 
uncertainties.

A s  �i ∼ N(0, �2)  a n d  zi,j = y(xi,�j)(1 + �i) =

f (xi,�j)(1 + �i) , we have

By the independent assumption of the observation noise,

is the product of m Gaussian density functions. Finally,

where �(�j) is the prior distribution, and p(zi,j|�j) 
is the density function of Gaussian distribution 
N(f (xi,�j), (f (xi,�j)�)

2).
From the previous process, we obtain posterior distribu‑

tions of all �j . These are joint probability density functions 
of multivariate random variables and are continuous; there‑
fore, they are suitable for the single‑component Metropo‑
lis–Hastings algorithm presented in Algorithm 2.

(7)p(�j|z1,j,⋯ , zm,j) ∝ �(�j) ⋅ p(z1,j,⋯ , zm,j|�j),

(8)zi,j|�j ∼ N(f (xi,�j), (f (xi,�j)�)
2).

(9)p(z1,j,⋯ , zm,j|�j) =

m∏

i=1

p(zi,j|�j),

(10)p(�j|z1,j,⋯ , zm,j) ∝ �(�j) ⋅

m∏

i=1

p(zi,j|�j),

3.3.2  Metropolis–Hastings sampling

As mentioned earlier, we intend to use a single‑com‑
ponent Metropolis–Hastings algorithm to construct a 
Markov chain X0,X1,⋯ whose stationary distribution is 
p(�j|z1,j,⋯ , zm,j) . To describe the transition mechanism for 
X0,X1,⋯ , assume that at time u the chain is at state �u , i.e., 
Xu = �u =

(
�(1)
u
,⋯ ,�(n)

u

)
 and the first v components of Xu+1 

are �(1)

u+1
,⋯ ,�

(v)

u+1
 . Then, the (v + 1) th component of Xu+1 ; 

that is, �(v+1)

u+1
 is determined using a two‑step procedure: 

 (i) Choose a new state �(v+1) according to the Gauss‑
ian proposal distribution N

(
�(v+1)
u

, �(v+1)2
)
 . That is, 

choose �(v+1) with probability density 

 It should be mentioned here that the selection of 
the standard deviation of the proposal distribution 
�(v+1) is considerable, and significantly large or small 
distribution will affect the results of the algorithm. 
We must carefully choose in combination with the 
dimension of parameter �(v+1).

 (ii) Decide whether to accept �(v+1) or not. Let 

 If �(�(v+1)
u

, �(v+1)) ≥ 1 , then �(v+1) is accepted as the 
(v + 1) th component of Xu+1 , i.e., �(v+1)

u+1
= �(v+1) . If 

𝛼(𝜇(v+1)
u

, 𝛽(v+1)) < 1 , then �(v+1) is accepted with prob‑
ability �(�(v+1)

u
, �(v+1)) . If �(v+1) is not accepted, then 

�(v+1)
u

 is kept as the v + 1 th component of Xu+1 , i.e., 
�
(v+1)

u+1
= �(v+1)

u
 . In other words, let U be uniformly 

distributed on (0, 1), then 

Although the Markov chain X0,X1,⋯ has a stationary dis‑
tribution � , not all outputs �i in Algorithm 2 are samples of 

(11)p(�(v+1)) =
1

√
2��(v+1)

e
−

1

2

�
�(v+1)−�

(v+1)
u

�(v+1)

�2

.

(12)

�(�(v+1)
u

, �(v+1))

=
p(�

(1)

u+1
,⋯ ,�

(v)

u+1
, �(v+1),�(v+2)

u
,⋯ ,�(n)

u
�z1,j,⋯ , zm,j)

p(�
(1)

u+1
,⋯ ,�

(v)

u+1
,�

(v+1)
u ,�

(v+2)
u ,⋯ ,�

(n)
u �z1,j,⋯ , zm,j)

=
�(�

(1)

u+1
,⋯ , �(v+1),⋯ ,�(n)

u
)

�(�
(1)

u+1
,⋯ ,�

(v+1)
u ,⋯ ,�

(n)
u )

⋅

n�

i=1

f (xi,�
(1)

u+1
,⋯ ,�(v+1)

u
,⋯ ,�(n)

u
)

f (xi,�
(1)

u+1
,⋯ , �(v+1),⋯ ,�

(n)
u )

⋅

e
−

1

2

∑m

i=1

�
[zi,j−f (xi ,�

(1)
u+1

,⋯,�(v+1) ,⋯,�
(n)
u )]2

(f (xi ,�
(1)
u+1

,⋯,�(v+1) ,⋯,�
(n)
u )�)2

−
[zi,j−f (xi ,�

(1)
u+1

,⋯,�
(v+1)
u ,⋯,�

(n)
u )]2

(f (xi ,�
(1)
u+1

,⋯,�
(v+1)
u ,⋯,�

(n)
u )�)2

�

,

(13)𝜇
(v+1)

u+1
=

{
𝛽(v+1),U < 𝛼(𝜇(v+1)

u
, 𝛽(v+1))

𝜇(v+1)
u

, else
.



 J.-Q. Zeng et al.

1 3

199 Page 6 of 13

p(�j|z1,j,⋯ , zm,j) . According to the MCMC theory, for any 
sample function of the Markov chainX0,X1,⋯ , only when 
the number of iterations is sufficiently large, the process 
is approximately random sampling from the distribution 
p(�j|z1,j,⋯ , zm,j).

Let Ncon be the number of convergence steps, Ntot be the 
total number of iteration steps. Denote N = Ntot − Ncon . 
For any j = 1,⋯ , k , we collect N number of samples 
�̂�j,Ncon+1

,⋯ , �̂�j,Ntot
 from p(�j|z1,j,⋯ , zm,j) and aggregate all of 

them to obtain a frequency distribution as estimation of the 
real distribution of �.

MCMC is known to suffer from the problem of dependence 
between samples because the generated samples are imple‑
mented through a Markov chain. However, our technical path 
is to examine these samples as a whole and then achieve an 
overall estimation of the parameters; thus, the impact of these 
correlations on the method is minimal.

3.3.3  Performance evaluation

To quantify the quality of the estimation, we introduced the 
Kullback–Leibler divergence [41], which has been widely used 
in information theory. Let p(x) and q(x) be two probability den‑
sity functions over Rn . The Kullback–Leibler divergence (KL 
divergence) between the distribution p(x) and q(x) is defined as

KL(p||q) ≥ 0 with equality if and only if p(x) = q(x) . Kull‑
back–Leibler divergence quantifies how close a probability 
distribution is to another one; that is, a larger KL divergence 
indicates a larger difference between the two distributions.

Because the Gaussian distribution is the most common type 
of distribution and is uniquely determined by its expectation 
and variance, we propose estimating the parameter using the 
Gaussian distribution with the expectation and variance being 
the mean and variance of the frequency distribution, respec‑
tively. We then evaluated the performance of the estimation by 
comparing the KL divergence of the prior distribution with the 
real distribution and that of the Gaussian distribution used for 
the estimation with the real distribution.

Suppose p(x) and q(x) are the density functions of N(�1, �1) 
and N(�2, �2) , respectively.

(14)KL(p||q) = −∫ p(x) ⋅ log
q(x)

p(x)
dx.

(15)KL(p||q) = log
�2

�1
+

�2
1
+ (�1 − �2)

2

2�2
2

−
1

2
.

4  Numerical examples

In this section, we examine the effectiveness of the proposed 
method. Two models in nuclear reactor physics, namely the 
finite cylindrical reactor and the 2D IAEA benchmark prob‑
lem, are tested below. The first test case, adapted from [42], 
has an analytical solution; the 2D IAEA benchmark problem 
is one of a classical benchmark problem in nuclear phys‑
ics [42] and has only a numerical solution. To verify the 
effectiveness of the distribution estimation method, some 
parameters in these models were assumed to be uncertain 
in the following tests:

4.1  The finite cylindrical reactor

A finite cylindrical reactor is a multiplying system of a uni‑
form reactor in the shape of a cylinder of physical radius R 
and height H. Its behavior is modeled using the following 
two‑dimensional monoenergetic diffusion equation:

where Re = R + d,He = H + d , and d is the extrapolated 
length.

By replacing the Laplacian with its cylindrical form, as 
shown in Fig. 1, the analytical solution of (16) is as follows 
when keff = 1:

where J0(r) is a zeroth‑order first‑order Bessel function.
Our goal is to estimate the distribution of certain uncer‑

tain parameters from the observations. Later, we compare 
two alternative schemes and examine the convergence of the 
method by applying them to single‑parameter estimates, fol‑
lowed by multiparameter estimates. We set A = 20,He = 18 

(16)

⎧
⎪
⎨
⎪
⎩

DΔ�(r, z) − Σa�(r, z) =
1

keff
�Σf�(r, z)

�(Re, z) = 0,�(r,He) = 0, r ∈ (0,Re), z ∈ (0,He)

,

(17)�(r) = A ⋅ J0

(
2.405r

Re

)
cos

(
�z

He

)
,

Fig. 1  (Color online) Geometry of the finite cylindrical reactor [43]
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and use the ensemble Bayesian method proposed in the pre‑
vious section to estimate the distribution of the parameter 
Re . In other words, we consider the following system:

where x ∈ [0.5, 7.5] ⊂ R is one‑dimensional spatial posi‑
tion, � is the input parameter we are interested in and is 
assumed to have a real distribution, and J0 is the zeroth‑order 
first‑order Bessel function. y ∈ R is an observable physical 
quantity, and z ∈ R is the observation of y with noise � . In 
this study, observations were prepared using synthetic data 
from simulations rather than real observations.

To prepare the observation data for our experiments, we 
first select m positions at equal intervals in [0.5,7.5] and 
repeatedly obtain the observations for the corresponding 
positions under k pairs of � sampled from the real distri‑
bution. Suppose � ∼ N(0,

√
0.2) , the real distribution of � 

is N(11.0, 0.36) and the prior distribution is N(12.0, 0.25), 
which could be an empirical estimate. In this case, the 
number of sensors m, number of samples k, number of con‑
vergence steps, and total number of steps of the Metropo‑
lis–Hastings algorithms Ncon and Ntot , which are introduced 
in Sect. 2.2, affect the results. Subsequently, we fix the value 
of N = Ntot − Ncon = 100 and discuss the effect of m, k,Ncon 
on the result. Before doing so, we compare two alterna‑
tive schemes after sampling from the posterior distribution 
p(�j|z1,j,⋯ , zm,j).

4.1.1  Comparison of two alternatives schemes

In this subsection, we compare these two schemes. Because 
�1,⋯ ,�k are k samples of � , a straightforward idea is to 

(18)

⎧
⎪
⎨
⎪
⎩

y(x,�) = 20 ⋅

�
2.405x

�

�
cos

�
�x

18

�

z(x,�) = y(x,�)(1 + �)

,

restore �1, ...,�k . After introducing the Metropolis–Hastings 
algorithm, we can sample from the posterior distribution 
p(�j|z1,j,⋯ , zm,j) and traditional practice is to estimate �i 
using samples from p(�j|z1,j,⋯ , zm,j) . Another scheme is 
to aggregate all samples from the posterior distributions 
p(�j|z1,j,⋯ , zm,j), j = 1,⋯ , k , as proposed earlier, rather 
than using their means.

Figure 2a, b presents the results of the first and second 
schemes, respectively, with m = 200 , k = 200 , Ncon = 100 . 
We can see that although the frequency distributions 
obtained by these two schemes have almost the same expec‑
tation, their variances are quite different; that is, the second 
scheme will obtain a variance much closer to the real case. 
We believe this was caused by the loss of observation infor‑
mation during the averaging step.

More importantly, the estimation of the second scheme is 
intuitively much better than that of the first. This is because 
more samples are obtained in the second scheme, resulting 
in a more robust estimation.

4.1.2  Convergence analysis

In this subsection, we discuss the effect of the parameters 
of the method on the result (i.e., the number of sensors m, 
number of samples k, and number of convergence steps of 
the Metropolis–Hastings algorithm Ncon ) and analyze the 
convergence of the method by setting N = Ntot − Ncon = 100.

Figure 3 shows the effect of Ncon on the performance of 
the proposed method under different settings of (m, k). This 
shows that the Metropolis–Hastings sampling algorithm 
used in the ensemble Bayesian method converges rapidly. 
When Ncon is somewhat large, such as Ncon = 100 , the 
increase hardly affects the performance of the method.

Figure 4 shows the effect of k on the performance of the 
method under different settings of m when Ncon = 100 is 
fixed. This shows that when k is small, there is a fluctuation 
in performance, and as k increases, the performance tends 

Fig. 2  (Color online) Finite 
cylindrical reactor problem: 
comparison of schemes 1 and 2, 
in which scheme 1 aggregates 
k number of means whereas 
scheme 2 aggregates k × N 
number of samples. Not only is 
the result of scheme 2 intui‑
tively better, but scheme 2 also 
obtains expectation and vari‑
ance, particularly the variance, 
closer to the real values
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to stabilize; that is, the expectation and variance tend to be 
closer to the real values, which are much closer than the 
prior values.

Figure 5 shows the effect of m on the performance of 
the method when Ncon = 100 and k = 200 are fixed. This 

shows that as m increases, the performance of the method 
improves; that is, the expectation and variance converge to 
the neighborhoods of the real values, and this expectation 
trend is particularly pronounced.

Fig. 3  (Color online) Finite 
cylindrical reactor problem: 
the effect of increasing Ncon on 
the results under three sets of 
parameters (m, k), i.e., (100, 
100), (150, 150), (200, 200), 
respectively. The curves in all 
three cases show that the effect 
of Ncon on the results is minimal

Fig. 4  (Color online) Finite 
cylindrical reactor problem: 
when Ncon = 100 is fixed, the 
effect of increasing number of 
samples k on the results under 
three sets of parameters m, i.e., 
100, 150, 200, respectively. 
The curves in all three cases 
show that the performance of 
the method improves with the 
increase of m and quickly con‑
verges to the real situation

Fig. 5  (Color online) Finite 
cylindrical reactor problem: 
when Ncon = 100, k = 200 is 
fixed, the effect of increasing 
number of sensors m on the 
results. The curve clearly shows 
the convergence process of 
algorithm performance. Com‑
pared with Ncon and k, m has the 
greatest influence on the method
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After applying the ensemble Bayesian method by setting 
m = 200, k = 200,Ncon = 100 , we obtained the frequency 
distribution shown in Fig. 2 (b). Intuitively, this frequency 
distribution provides an effective estimation of the real 
distribution. Equation (19) describes the KL divergence 
calculations. From the perspective of the KL divergence, 
we again conclude that the distribution for the estimation 
derived using the ensemble Bayesian method is much closer 
to the real distribution than the prior one.

4.1.3  Estimation of several parameters

In this section, we test the effectiveness of the method for 
estimating several parameters simultaneously because sev‑
eral parameters are simultaneously uncertain in many cases. 
Now, we use the ensemble Bayesian method proposed in this 
study to simultaneously estimate the distributions of three 
parameters A,Re and He . Consider the following system:

where x ∈ [0.5, 7.5] ⊂ R is a one‑dimensional spatial posi‑
tion; �(1),�(2),�(3) are parameters that we are interested 
in and assumed to have a real joint distribution; J0 is the 
zeroth‑order first‑order Bessel function. y ∈ R is an observ‑
able physical quantity, and z ∈ R is the observation of y with 
noise � ∼ N(0,

√
0.2).

We experimented with the simulation datasets. To prepare 
the observational data for our experiments, we first selected 
200 positions at equal intervals in [0.5,7.5] and repeat‑
edly obtained observations for the corresponding positions 

(19)KL(pprior||preal) = 1.418,KL(pest||preal) = 0.180.

(20)

⎧
⎪
⎨
⎪
⎩

y(x,�(1),�(2),�(3)) = �(3)
⋅ J0

�
2.405x

�(1)

�
cos

�
�x

�(2)

�

z(x,�(1),�(2),�(3)) = y
�
x,�(1),�(2),�(3)

�
(1 + �)

,

under 200 pairs of (�(1),�(2),�(3)) sampled from the real joint 
distribution.

Suppose the real joint distribution of (�(1),�(2),�(3)) be 
three‑dimensional Gaussian distribution with expectation 
E(�(1),�(2),�(3)) and covariance matrix Cov(�(1),�(2),�(3)) 
as follows:

It should be noted that the correlations between them are 
assumed here.

Prior distribution �(�1,�2,�3) is also a three‑dimensional 
Gaussian distribution with expectation Ep(�1,�2,�3) and 
covariance matrix Covp(�1,�2,�3) as follows:

After applying the ensemble Bayesian method by setting 
m = 200 , k = 200 , Ncon = 100 , we obtained three frequency 
distributions, as shown in Fig. 6. We find that the expecta‑
tions and variances of all these frequency distributions are 
significantly close to the expectations and variances of the 
real marginal distributions. Intuitively, the frequency dis‑
tributions provide an effective estimation; therefore, the 
ensemble Bayesian method is also suitable for the simulta‑
neous estimation of several parameters. From the perspective 

E(�(1),�(2),�(3)) =

⎛
⎜
⎜
⎝

11

18

20

⎞
⎟
⎟
⎠
,

Cov(�(1),�(2),�(3)) =

⎛
⎜
⎜
⎝

0.25 0.1 0

0.1 0.25 0

0 0 1

⎞
⎟
⎟
⎠
.

Ep(�
(1),�(2),�(3)) =

⎛
⎜
⎜
⎝

12

19

22

⎞
⎟
⎟
⎠
,

Covp(�
(1),�(2),�(3)) =

⎛
⎜
⎜
⎝

0.16 0 0

0 0.16 0

0 0 1.44

⎞
⎟
⎟
⎠
.

Fig. 6  (Color online) Finite cylindrical reactor problem: result of three marginal distributions when setting the number of sensors m = 200 , num‑
ber of samples k = 200 , and number of convergence steps of Metropolis–Hastings algorithm Ncon = 100
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of the KL divergence, the estimation also shows a significant 
improvement compared to the prior distribution. Equation 
(21) provides the calculations for the KL divergences.

4.2  the 2D IAEA benchmark problem

[42] gives the definition of the 2D IAEA benchmark prob‑
lem and [44] gives its implementation with neutronic code. 
Figure 7 illustrates the geometry of the reactor. Note that 
only one‑quarter is given because the rest can be inferred 
by symmetry along the x and y axes. We denote this quarter 
by Ω , which is composed of four subregions with different 
physical properties: Neumann boundary conditions for the 

(21)

KL(pprior(�1)||preal(�1)) = 2.431

KL(pest(�1)||preal(�1)) = 0.300

KL(pprior(�2)||preal(�2)) = 2.431

KL(pest(�2)||preal(�2)) = 0.130

KL(pprior(�3)||preal(�3)) = 2.038

KL(pest(�3)||preal(�3)) = 0.039

.

left and bottom boundaries and the mixed boundary condi‑
tion for the external border.

The 2D IAEA benchmark problem as modeled by two‑
dimensional two‑group diffusion equations. Specifically, the 
flux � = (�1,�2)

T (indexes 1 and 2 denote the high and ther‑
mal energy, respectively) satisfies the following eigenvalue 
problem [5]: Find (�,�) ∈ C × L∞(Ω) × L∞(Ω) , s.t.

where Σ1→2 is the macroscopic scattering cross section 
from groups 1 to 2; Di , Σa,i , Σf,i , and �i are the diffusion 
coefficient, macroscopic absorption cross section, macro‑
scopic fission cross section, and fission spectrum of group 
i, i ∈ {1, 2} , respectively; and � is the average number of 
neutrons emitted per fission. In other words, these quantities 
are the model parameters. The general settings are listed in 
Table 1.

Later, we assumed D2 in Ω4 was uncertain and used the 
proposed ensemble Bayesian method to estimate its distribu‑
tion, as it is probably one of the most important parameters. 
We assume that all other parameters are certain and set them 
according to Table 1 except for D2 in Ω4 . We denote this as 
� , which is what we are interested in.

We experimented with simulation datasets. To pre‑
pare the observation data for our experiments, we first 
selected 45 positions (i.e., (10, 10), (30, 10), (30, 30),⋯ , 
(170, 10),⋯ , (170, 170) ) in area Ω and repeatedly obtained 
the observations for the corresponding positions under 200 
pairs of � sampled from the real distribution.

Moreover, the two‑dimensional two‑group diffusion 
Eq. (22) must be solved in the algorithm process. This was 
achieved by employing the generic high‑quality finite ele‑
ment solver FreeFem++ [45].

Suppose that the real distribution of � is a Gaussian distri‑
bution with expectation E(�) and variance Var(�) as follows:

where E(�) is the value listed in Table 1.
The prior distribution �(�) is also a Gaussian distribution 

with expectation Ep(�) and variance Varp(�) as follows:

(22)

{
− ∇(D1∇�1) + (Σa,1 + Σ1→2)�1 = ��1(�Σf,1�1 + �Σf,2�2)

− ∇(D2∇�2) + Σa,2�2 − Σ1→2�1 = ��2(�Σf ,1�1 + �Σf,2�2)
,

(23)E(�) = 2.00,Var(�) = 0.04,

Fig. 7  (Color online) Geometry of 2D IBP, upper octant: region 
assignments, lower octant: fuel assembly identification [44]

Table 1  General settings of the 
parameters of the IAEA 2D 
benchmark problem

Region D1 D2 Σ1→2 Σa,1 Σa,2 �Σf ,1 �Σf ,2 �1 �2 Material
(cm) (cm) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

Ω1 1.50 0.40 0.02 0.01 0.080 0.00 0.135 1 0 Fuel 1
Ω2 1.50 0.40 0.02 0.01 0.085 0.00 0.135 1 0 Fuel 2
Ω3 1.50 0.40 0.02 0.01 0.130 0.00 0.135 1 0 Fuel 2 + Rod
Ω4 2.00 0.30 0.04 0.00 0.010 0.00 0.000 0 0 Reflector



Ensemble Bayesian method for parameter distribution inference: application to reactor physics  

1 3

Page 11 of 13 199

After applying the ensemble Bayesian method with set‑
ting Ncon = 100 , we obtained the frequency distribution 
shown in Fig. 8. We find that the expectation of the fre‑
quency distribution is significantly close to the real expec‑
tation, and the variance is also closer to the real variance 
than the prior distribution. Furthermore, the frequency 
distribution intuitively provided an effective estimation. 
From the perspective of the KL divergence, the estima‑
tion also shows a significant improvement compared to 
the prior estimation. Equation (25) describes the KL diver‑
gence calculations. In this case, we used the engineering 
software FreeFem++ to implement our algorithm because 
this model only has numerical solutions; therefore, the 
proposed ensemble Bayesian method has potential for 
engineering applications.

For the finite cylindrical reactor, the computation time of 
one‑dimensional case (Fig. 2b) is 111.7 s; the computation 
time of three‑dimensional case (Fig. 6) is 359.6s. For the 
2D IAEA benchmark (Fig. 8), the computation time is about 
130000 s. The main reason why 2D IAEA benchmark takes 
more time is that FreeFem++ takes up most of the runtime, 
and the most important problem is that FreeFem++ is not 
called or connected to the code efficiently enough. There‑
fore, if there is a way to call FreeFem++ efficiently, it can 
significantly save computing time.

(24)Ep(�) = 2.20,Varp(�) = 0.05.

(25)KL(pprior||preal) = 0.5134,KL(pest||preal) = 0.0213.

5  Conclusion

In this study, we considered model parameters from the 
perspective of random variables in the context of nuclear 
reactor engineering and proposed a general form of param‑
eter distribution inference problem. In the context of this 
parameter distribution estimation problem, we conducted 
a preliminary exploration and proposed an ensemble 
Bayesian method to estimate the parameters by obtain‑
ing frequency distributions, combined with a special type 
of experimental setup. Simultaneously, we introduced the 
KL divergence theory to quantify the estimation perfor‑
mance of the method. Various numerical experiments were 
conducted, including a finite cylindrical reactor model, 
which has an analytical solution, and the 2D IAEA bench‑
mark problem, which only has a numerical solution. From 
the results of these tests, the following conclusions were 
drawn:

• For those two models, the frequency distributions intui‑
tively provide effective estimation for the parameters. 
The expectations are significantly close to the real ones, 
and the variances are also more accurate than the prior 
distributions. From the perspective of KL divergence, 
the method also has good performance;

• The ensemble Bayesian method can estimate several 
parameters simultaneously, even if there are correla‑
tions between them;

• When the model has only numerical solution, we use 
engineering software FreeFem++ to implement our 
algorithm. The method also works well in this case, 
which means it has potential for engineering applica‑
tions;

• The convergence speed of the method is fast. Thus, in 
general, the ensemble Bayesian method we propose has 
optimistic application prospects.

The proposed method shows high potential for engineer‑
ing applications to correct prior distributions when using 
the data assimilation technique for parameter estimation.

Further studies could investigate the performance of 
the proposed method under moderate‑scale parameters, 
the performance for non‑Gaussian parameters, and char‑
acteristic parameters that are likely to be difficult to repro‑
duce. As an important review of machine learning (ML) in 
nuclear physics, [46] not only describes the different meth‑
odologies used in ML algorithms and techniques and some 
applications, particularly for low‑ and intermediate‑energy 
nuclear physics, but also provides a valuable summary 
and outlook on the possible application directions and 
improvements of ML algorithms in low‑ and intermediate‑
energy nuclear physics. Inspired by the review, we will 

Fig. 8  (Color online) 2D IAEA benchmark problem: Result of the 
method when setting the number of samples k = 200 and the number 
of convergence steps of Metropolis–Hastings algorithm Ncon = 100
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improve the efficiency of the method, and our initial idea 
is to improve the efficiency of the Metropolis–Hastings 
sampling method used in this study. Furthermore, we will 
determine how to involve more physics‑informed or phys‑
ics‑guided to develop new machine learning algorithms.
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