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Abstract
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity 
neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies 
of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for 
 SN transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The 
spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux trans-
mission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport 
sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 
2D/3D  SN transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems: 
IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algo-
rithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has 
good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.

Keywords Shielding calculation · Discrete ordinates method · Discontinuous Galerkin finite element method · Unstructured 
meshes

1 Introduction

High-fidelity neutron-shielding calculations are an essen-
tial part of advanced nuclear reactor system design. The 
discrete ordinate  (SN) method is one of the most popular 
deterministic particle transport methods owing to its high 
angular resolution [1]. Reliable modeling and simulation of 
 SN transport depend on two key essential conditions and 
fundamental components: reasonable spatial discretization 
schemes and mesh distributions with sufficient modeling 

fidelity. The two key factors interacted with and supported 
each other throughout the process.

Conventional Cartesian structured grids are widely used 
and implemented because of their regular arrangement and 
friendliness to finite-difference (FD) spatial discretization 
schemes [2–4]. However, there is no general robust meshing 
algorithm for acquiring exact descriptions of complex struc-
tures for realistic modeling and simulations [5]. Adaptive 
mesh refinement techniques retain the original mesh distri-
bution features and mark cells with large errors for refine-
ment [6]. Local error estimation techniques and geometric 
data structures play significant roles in determining the 
stabilities and computational efficiencies of these systems. 
Unstructured grids use piecewise flat or curved surfaces 
to provide complicated geometries with the highest possi-
ble flexibility. With the development of the finite element 
method (FEM), unstructured grids have been widely applied 
to reactor physical analyses [7], multiphysics simulations 
[8], and thermal-fluid dynamics [9]. Combining finite ele-
ment numerical methods and the SN method with unstruc-
tured meshes has become a trend in nuclear shielding design.
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Unfortunately, the first-order SN equation cannot be 
solved stably using the continuous FEM [10]. However, 
while the solutions to this hyperbolic equation are smooth 
along the streamlines, they may be discontinuous perpen-
dicular to the chosen direction. To obtain a robust solution, 
several Petrov–Galerkin (PG) approaches that update the test 
function as the sum of the trial functions and introduce an 
additional stabilization term [11–13]. It was observed that 
the free stabilization parameter affects the convergence of 
the  SN equation and raises uncertainty because it is usually 
considered as a matter of experience. Additionally, PGs can-
not generally produce symmetric positive-definite coefficient 
matrices or inherit the best approximation property when the 
transport equations contain nonself-adjoint operators.

The discontinuous Galerkin finite element method 
(DGFEM) is a different category of stability improvement. 
This was pioneered by Reed and Hill for neutron transport 
problems in the early 1970s [14]. The DGFEM connects 
adjacent elements through the incoming interface fluxes 
from the upwind (upstream) meshes and applies the usual 
FEM procedure to a single mesh. However, the number of 
unknowns in the DGFEM is much larger than that in the 
continuous FEMs, which demands a matrix assembly and 
solution method. The standard matrix assembly procedure 
looks for a reliable iterative solver for a banded sparse sys-
tem matrix solution and must handle the storage brought 
on by the increased freedom [15]. The matrix-free strategy 
stores the diagonal blocks and realizes the inversion of the 
transport operator by means of the matrix–vector product; 
however, a sum factorization technique to enable translation 
between vector entries and values or gradients in quadrature 
points is required [16]. Another commonly used technique is 
the conventional sweeping procedure, such as FDs, in which 
parallelization of the sweeping procedure is implemented to 
reduce the computing time, which may become important 
in a large SN order.

In terms of parallelization, complex grid connection 
relationships and irregular element sweep orders pose chal-
lenges to the algorithms. In 2000, Plimpton described an 
asynchronous, parallel message-passing algorithm that 
simultaneously performs sweeps from many directions 
across unstructured grids [17]. In 2002, Pautz used a low-
complexity list-ordering heuristic to determine sweep order-
ing on a partitioned mesh [18]. The essence of these two 
algorithms is the conversion of the abstract element sweep 
order into a directed acyclic graph (DAG). Since 2010, sev-
eral research institutions have conducted extensive studies 
on high-performance architectural applications [19, 20].

A multigroup 2D SN transport code, ThorSNIPE, with 
unstructured meshes was developed and validated [21]. 
This code was extended to 3D SN transport calculations 
and employed a multithreaded parallel upwind sweep algo-
rithm to achieve a more accurate description and improve the 

reliability and efficiency of transport calculations in complex 
geometries. The finite element method was implemented 
using an open-source finite element library deal.II-9.4.0 
[22]. The deal.II is an open-source C++ program library 
targeted at the computational solution of partial differen-
tial equations using adaptive finite elements and focuses 
on generality, dimension-independent programming, paral-
lelism, and extensibility. It includes many state-of-the-art 
programming techniques for solving partial differential 
equations, linear algebra problems, and computer science 
strategies and offers users a modern interface for complex 
data structures and algorithms. With the assistance of this 
library, ThorSNIPE can be made dimension-independent, 
supporting different mesh sizes and types of finite elements.

The remainder of this paper is organized as follows. In 
Sect. 2, the main theory and methodology of the ThorSNIPE 
code are described in detail, including the  SN weak-form 
equation based on DGFEM theory and the multithreaded 
parallel upwind sweep algorithm. The numerical results are 
presented and discussed in Sect. 3. The conclusions are sum-
marized in Sect. 4.

2  Theory and methodology

2.1  Weak form of the discrete ordinates method 
equations

The  SN form was obtained by solving the Boltzmann trans-
port equation along discrete directions and replacing the 
integrals over the unit sphere with quadrature sets. The 
steady-state multi-group  SN neutron transport equation can 
be written as

where D is the domain. �g
m(r) is the angular flux in group 

g , direction Ωm and position r . Σg

t
 is the macroscopic total 

cross section in group g . Qg
m(r) is a source term in group g , 

direction Ωm and position r . For fixed source problems, it 
can be expressed as:
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where G and M are total groups and angles. Σg�→g
s,n (r) is the n

th-order Legendre moment of scattering cross section from 
group g′ to group g at position r . Σg�

f
(r) is the macroscopic 

fission cross section in group g′ at position r . �g� (r) is the 
average number of neutrons produced per fission in group 
g′ . keff is the eigenvalue. �k

n
(r) represents kth, nth-order flux 

moment at position r . Yk
n
(Ωm) is kth, nth-order spherical har-

monic in direction Ωm at position r . qg(r) is fixed-source in 
group g at position r . �g(r) is scalar flux in group g at posi-
tion r . �m is weight factor of quadrature set.

Equation (1) is a linear hyperbolic equation: It is nec-
essary to transform this “strong form” differential-integral 
equation into “weak form” for solving. The spatial domain D 
is decomposed into K elements, which can be unstructured 
because the FEM is independent of the space dimension and 
grid choice. Consider �Vk as the surface of the k th element 
and Vk as the volume of the k th element, where k = 1, ...,K . 
To obtain the weak form, Eq. (1) is multiplied by an arbi-
trary test function �∗

m
(r) and integrated into any element k . 

Equation (1) can be rewritten in monoenergetic form as

The divergence theorem is then applied to Eq.  (5), 
yielding:

where n(r) is the unit normal vector to the surface of cell �Vk 
at position r . Inner products on the volume and surface of 
any element are introduced to express the bilinear form [23].

Substituting Eq. (7) and (8) in (6),
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The general boundary can be divided into three types 
based on its relative position: interior boundary, outflow 
domain boundary 

(
𝜕V+

k
=
{
r ∈ 𝜕Vk,Ω ⋅ n(r) > 0

})
 , and 

inflow domain boundary 
(
𝜕V−

k
=
{
r ∈ 𝜕Vk,Ω ⋅ n(r) < 0

})
 . 

The inflow-domain boundary conditions were prescribed as 
either vacuum or reflective for the incoming directions. So, 
Eq. (9) can be rewritten as

where �+
m

 , �−
m

 , and � in
m

 are the outflow angular, inflow angu-
lar, and interior face fluxes, respectively. Equation (10) rep-
resents the weak form of the  SN equation.

2.2  The discontinuous Galerkin finite element 
discretization scheme

The Galerkin method is theoretically based on the 
weighted residual method, which multiplies the original 
partial differential equation by a test function. Seeking a 
numerical approximation of the angular flux term using 
Lagrange polynomials of degree P

where bj(r) is the Lagrange shape function and �m,j is an 
unsolved coefficient. The matrix form is convenient for solv-
ing Eq. (10), which expresses �m,j and bj(r) in row vector 
notation, and Eq. (11) can be written as

In Galerkin discretization schemes, test functions share 
similar function space as basis functions,

Substituting Eq. (12) and (13) in (10),

The upwind scheme is the essence of the DGFEM. 
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2.3  Multithreaded parallel upwind sweep algorithm

2.3.1  Cell‑based sweep algorithm

In the  SN method, a transport sweep was performed for all 
elements along each discrete direction. The ordering in 
which the elements and degrees of freedom (DOF) traverse 
affects the speed of convergence. As mentioned in Sect. 1, 
the DGFEM makes it possible to use a cell-based sweeping 
procedure in  SN methods rather than assembling a global 
matrix.

The element sweep order for each discrete direction in the 
ThorSNIPE code was developed using an upwind scheme 
based on the deal.II library. In our case, an array with all 
relevant cells is created and sorted in the upwind direc-
tion using a “dealii:: DoFRenumbering:: CompareDown-
stream” object in the deal.II FEM library. A straightforward 
2D model with three material regions and various sweep 
schemes is shown in Fig. 1. Cells in a conventional scheme 
are often categorized from edge to center to make it easier 
to facilitate the creation of a global matrix. The downwind 
system performs renumbering in the direction opposite to 
the discrete direction, whereas the upwind scheme manages 

renumbering alongside it. The definitions of “upwind” and 
“downwind” are determined by multiplying the unit normal 
vector to the cell's surface by the cosines of the correspond-
ing discrete direction. In reality, the mesh location, discrete 
direction, and sweep define the order of each element. The 
sweep solution technique also complies with neutron trans-
port laws. Not all pathways are mutually exclusive, and each 
distinct direction results in a unique order in which this solu-
tion technique can be applied.

From the perspective of solving the equations, various 
sweep schemes also affect the calculation of the incoming 
angular fluxes � in

m
 in Eq. (14). Primal functions obtained 

from neighboring elements require numerical values with 
a certain precision. The calculation error was gradually 
reduced when the transport equation was solved along the 
direction of particle motion using the upwind scheme. How-
ever, other schemes must process nondirectional data, adapt, 
and learn based on the data received. This process can be 
laborious and error-prone, and the accumulation of errors 
inevitably affects the robustness of the numerical calcula-
tion method. Thus, the entire solution procedure required 
more iterations.

Fig. 1  (Color online) a Material 
region distribution; b Con-
ventional scheme; c Upwind 
scheme; d Downwind scheme
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Algorithm 1 displays the cell-based sweep algorithm for 
each group and angle once the sweep order has been deter-
mined. The local equation can be divided into two parts as 
follows: The transport matrix first makes contributions from 
the streaming and removal operators determined by the fixed 
mass matrix and total cross section. Second, the right-hand 
side (RHS) vector includes contributions from scattering 
source operations and fixed source or fission source opera-
tors. The in-group and cross-group couplings comprised the 
contributions of the scattering sources. Lastly, a “dealii:: 
types:: global dof index” object translates the local solution 
to the global angular solution. This cell-based sweep tech-
nique delivers the DGFEM solution to all cells in a single 
sweep order without coupling integral terms, fully utilizing 
the key benefits of DGFEM approaches.

The following two steps were employed to compute the 
local contributions of an individual cell and RHS: First, the 
integral is transformed from an actual cell k into a unit/ref-
erence cell k̂ . For example, the streaming operator is trans-
formed into

where the hat indicates the reference coordinates, and J(̂r) is 
the Jacobian of the mapping r = Fk (̂r) . Second, this integral 
is approximated using the Gauss–Legendre quadrature. This 
yields the formula

(15)

∫
Vk

bT(r)Ωm∇b(r)dV

= ∫
V
k̂

[
J−1 (̂r)bT (̂r)

][
ΩmJ

−1 (̂r)∇b(̂r)
]||det J(̂r)||dV ,
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where q is the index of the quadrature point, r̂q is the loca-
tion of the reference cell, and wq is the Gaussian quadrature 
weight. In this study, triangular and tetrahedral grids were 
used for the 2D and 3D cases, respectively.

2.3.2  Multithread parallel strategy

Parallel transport computation has gained popularity in 
the nuclear field because of the emergence of high-per-
formance computing clusters [24]. How the processors 
schedule parallel jobs significantly affects the perfor-
mance of code using parallel computing. The two basic 
techniques are spatial-domain decomposition (SDD) [25] 
and angular-domain decomposition (ADD) [26]. SDD 
techniques subdivide the spatial domain into subdomains, 
such that the common mesh-sweep method is performed 
concurrently in numerous subdomains at diverse angles. 

(16)

∫Vk

bT(r)Ωm∇b(r)dV

= ∫V
k̂

[
J−1 (̂rq)b

T(̂rq)
][
ΩmJ

−1 (̂rq)∇̂b(̂rq)
]|||det J(̂rq)

|||wq,

However, parallelizing the  SN spatial sweep is more chal-
lenging because of the upwind-downwind dependencies 
between the domain boundaries.

ADD techniques are frequently considered more 
expandable and require less memory [27]. They entail a 
mesh sweep along a similar quadrant and are the same 
for all angles in the chosen quadrature [28]. All opera-
tions are statically scheduled to the participating proces-
sors without negatively affecting the load balance and are 
ideally suited for personal computers (PCs). In shared 
memory machines, the traditional approach to parallelism 
is to break code down into threads. The deal.II leverages 
the threading building blocks (TBB) library [29] as basic 
wrappers to build an object called “tasks”. TBB offers 
transferable interfaces across many different platforms and 
abstracts the specifics of run-state signals onto individual 
threads.

The entire procedure for the multithreaded parallel 
approach in the ThorSNIPE code is shown in Fig. 2. Both 
inner and outer iterations contain an angular loop. The 
number of CPU cores determines the total number of tasks 
in a PC system. The angular loops were divided into a 
specific number of subranges that were evenly distributed 
across the threads. A cell-based sweep sequence is used 
for each angular loop. A subrange is a task. The tasks are 
essentially independent during the iterations. They per-
formed the calculations using the same mesh and equa-
tion structure as the respective quadrature set. However, 

Fig. 2  Flowchart depicting multithreaded parallel strategy

Fig. 3  (Color online) Geometry 
of the IAEA 5-region fixed 
problem

Table 1  Cross section of the IAEA 5-region fixed problem

Region ∑
t
(cm−1)

∑
f
(cm−1)

∑
s
(cm−1) s (cm−2s−1)

R1 0.60 0.079 0.53 1.0
R2 0.48 0.0 0.20 0.0
R3 0.70 0.0 0.66 1.0
R4 0.65 0.043 0.50 0.0
R5 0.90 0.0 0.83 0.0
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the storage of angular fluxes is based on the local DOF 
indices calculated using sweep schemes. The calculation 
results for different subranges were collected to update 
the scattering source. Following the execution of the sub-
ranges, threads keep themselves busy by stealing complete 
portions of the subranges from other threads if they have 
finished their work. Thus, the code can fully exploit the 
system thread resource, which requires frequent interrup-
tions by the operating system to allow other threads to 
execute on the available processor cores.

3  Results and discussions

The multithreaded parallel upwind sweep algorithm is 
validated using three typical benchmark problems. The 
IAEA benchmark with five different regions was used to 
test the performances of the different sweep schemes. The 
Kobayashi-3i benchmark with cavities and bend ducts was 
adopted to evaluate the performance of the parallel com-
putation for different mesh sizes and angular quadrate sets. 
The VENUS-3 benchmark was used to validate the algo-
rithm’s capabilities for realistic transport calculations. In all 

benchmarks, convergence criteria are  10−5 for the eigenvalue 
and  10−4 for the average flux in each space interval.

3.1  IAEA benchmark

The IAEA benchmark is a 2D five-region calculation 
problem consisting of two large source zones and two 
large absorber zones surrounded by light water [30] and is 
designed for IAEA advanced reactor neutron transport com-
putation. There is a strong nonuniformity in the fuel region, 

Table 2  Comparison of average flux of the IAEA benchmark

Reference Average flux (Relative errors)  cm−2  s−1

Conventional Downwind Upwind

R1 11.941 11.872 (0.58%) 11.874 (0.56%) 11.871 (0.59%)
R2 0.545 0.547 (0.37%) 0.547 (0.37%) 0.546 (0.18%)
R3 19.168 19.045 (0.64%) 19.051 (0.61%) 19.039 (0.67%)
R4 0.843 0.838 (0.60%) 0.840 (0.36%) 0.837 (0.71%)
R5 1.530 1.542 (0.78%) 1.553 (1.50%) 1.531 (0.07%)

Table 3  Comparison of average flux and keff of the IAEA benchmark

Reference Average flux (Relative Errors)  cm−2  s−1

Conventional Downwind Upwind

R1 0.01686 0.016371 
(2.90%)

0.01661 (1.18%) 0.016643 
(1.29%)

R2 0.000125 0.000131 
(4.80%)

0.000128 
(2.40%)

0.000128 
(2.40%)

R3 0.000041 0.000040 
(2.44%)

0.000041 
(0.00%)

0.000041 
(0.00%)

R4 0.000295 0.000295 
(0.00%)

0.000293 
(0.68%)

0.000293 
(0.68%)

R5 0.000791 0.000799 
(1.01%)

0.000788 
(0.38%)

0.000789 
(0.25%)

keff 1.0083 1.007076 1.008371 1.008305
pcm − 12 7 1

Fig. 4  Number of iterations with the change in the number of ele-
ments for different sweep schemes

Fig. 5  (Color online) Geometry of the Kobayashi-3i benchmark
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as shown in Fig. 3. The cross sections are given in Table 1, 
and all boundary conditions are vacuum.

This benchmark problem is mainly used to analyze the 
effect of the element sweep order on the cell-based algo-
rithm efficiency and assert the superiority of the upwind 
sweep scheme. Under the  PNTN-S8 angular approximation, 
comparisons of the numerical results for the fixed source and 
eigenvalue cases simulated with 2338 elements are presented 
in Tables 2 and 3, respectively. The relative deviations in 
the average flux were within 2.50% in the fixed-source case 
and within 5.00% in the eigenvalue case. All the numerical 
results show excellent agreement with the references, dem-
onstrating the accuracy and validity of the algorithm and 
modeling approach for such strongly heterogeneous prob-
lems. The change in the element sweep order does not make 
a large difference to the results. This is because the transport 

sweep operations were performed individually on each ele-
ment, and the results were added. Because matrix addition 
is commutative and these operators in the equation can be 
described as applying a sum of matrices, the orders of vari-
ous components will not impact the final result.

As shown in Fig. 4, the number of iterations was com-
pared with the change in the number of elements in the 
fixed-source calculation. The numerical results indicated 
that the upwind sweep scheme had a stable convergence 
speed, regardless of the number of elements. The relation-
ship between the number of iterations and elements grows 
exponentially in both types of sweep schemes. The primary 
functions on the edges are determined based on the upwind 
edges with regard to the streaming direction, and transport 
problems involve a directional flow of information. The 
upwind scheme fully uses the initial boundary conditions 
and provides spatial flux moments for the neighboring ele-
ments. The other sweep schemes increased the number of 
source and power iterations required to meet the convergence 
criteria in the subsequent matrix calculations to compensate 
for the lack of constraints. In addition, no overhead cost of 
assembling and solving the stiffness matrix in the current 
framework was observed for the three sweep schemes men-
tioned above. Therefore, the upwind sweep algorithm can 

Table 4  Cross section of the Kobayashi-3i benchmark

Region ∑
t
(cm−1)

∑
s
(cm−1) s (cm−2s−1)

R1 0.1 0.05 1.0
R2 0.0001 0.00005 0.0
R3 0.1 0.05 0.0

Fig. 6  a Root-mean-square of 
Scalar flux L2-error versus the 
order of quadrature sets for 
the Kobayashi-3i benchmark; 
b speedup ratio versus the 
order of quadrature sets for the 
Kobayashi-3i benchmark

Fig. 7  (Color online) Mesh 
distribution and scalar flux of 
the Kobayashi-3i benchmark
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save significant computational costs with fewer iterations 
and is suitable for DGFEM simulations.

3.2  Kobayashi‑3i benchmark

The Kobayashi-3i benchmark [31] is a bend duct-type prob-
lem with void regions in a highly absorbing medium, as 
shown in Fig. 5. The cross sections used in this benchmark 
problem are listed in Table 4. This problem was set up to 

analyze the features of spatial and angular discretization 
and demonstrate the parallel efficiency of the multithreaded 
strategy.

Angular flux distribution over full domain with mesh 
sizes of 5 cm, 4 cm, 3 cm, 2.5 cm, and 2 cm are modeled and 
simulated. The quality of the quadrature sets was quantified 
by taking the root-mean-square (RMS) of the relative scalar 
flux of all N point detectors.

Table 5  Total flux comparison 
in the Kobayashi-3i benchmark

Case Co-ordinates MCNP  (cm−2  s−1) ThorSNIPE  (cm−2  s−1) Relative 
errors (%)

3A (5,5,5) 8.61578 ×  10−0 8.61432 ×  10−0 − 0.02
(5,15,5) 2.16130 ×  10−0 2.13602 ×  10−0 − 1.17
(5,25,5) 8.93784 ×  10−1 8.93551 ×  10−1 − 0.03
(5,35,5) 4.78052 ×  10−1 4.72878 ×  10−1 − 1.08
(5,45,5) 2.89424 ×  10−1 2.87933 ×  10−1 − 0.52
(5,55,5) 1.92698 ×  10−1 1.91669 ×  10−1 − 0.53
(5,65,5) 1.04982 ×  10−1 1.04268 ×  10−1 − 0.68
(5,75,5) 3.37544 ×  10−2 3.43534 ×  10−2 1.77
(5,85,5) 1.08158 ×  10−2 1.08608 ×  10−2 0.42
(5,95,5) 3.39632 ×  10−3 3.47318 ×  10−3 2.26

3B (5,55,5) 1.92698 ×  10−1 1.91669 ×  10−1 − 0.53
(15,55,5) 6.72147 ×  10−2 6.74001 ×  10−2 0.28
(25,55,5) 2.21799 ×  10−2 2.20850 ×  10−2 − 0.43
(35,55,5) 9.90646 ×  10−3 9.74980 ×  10−3 − 1.58
(45,55,5) 3.39066 ×  10−3 3.43623 ×  10−3 1.34
(55,55,5) 1.05629 ×  10−3 1.04113 ×  10−3 − 1.44

3C (5,95,5) 3.44804 ×  10−4 3.45115 ×  10−4 0.09
(15,95,5) 2.91825 ×  10−4 2.98723 ×  10−4 2.36
(25,95,5) 2.05793 ×  10−4 2.07437 ×  10−4 0.80
(35,95,5) 2.62086 ×  10−4 2.63330 ×  10−4 0.47
(45,95,5) 1.05367 ×  10−4 1.07620 ×  10−4 2.14
(55,95,5) 4.44962 ×  10−5 4.46921 ×  10−5 0.44

Fig. 8  (Color online) Geometry 
of the Venus-3 benchmark
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where the reference solutions �ref were obtained using an 
analytical method [31]. The RMS of the relative errors in the 
scalar flux using different quadrature sets versus the number 
of ordinates is presented in Fig. 6a. It should be noted that 
the various approximations in the DGFEM with different 
mesh sizes converged at variable speeds and started to flat-
ten as the number of ordinates increased under  S20 angular 
approximations.

The ThorSNIPE code runs on a PC with 8 cores/16 
threads (one 11th Gen Intel(R) Core(TM) i7-11700F CPU 
running at 2.5 GHz) to demonstrate the performance and 
gain of the multithread technology. The speedup ratio with 
respect to serial mode versus the order of quadrature sets 
is presented in Fig. 6b, where the parallel implementation 
efficiency exceeds 100% when the S12 angular approxi-
mations are attained, and the mesh size is less than 3 cm. 
The comparative results show that the proposed method 
can achieve a better acceleration effect as the number of 
meshes increases. It can also be observed that the speedup 
ratio increases more slowly when the S20 angular approxi-
mations are attained. In this case, each thread has over 30 
parallel tasks, and memory access becomes a bottleneck 
in the matrix solvers for partial differential equations. The 
numerical results are shown in Fig. 7, and the neutron 
fluxes at the key points are listed in Table 5. Compared 
with MCNP [31], the ThorSNIPE code effectively reduces 
angular discretization errors and fulfills the transport com-
putational requirement to a certain degree.

3.3  VENUS‑3 benchmark

The VENUS-3 benchmark was proposed to validate 
the capabilities of the calculation methodologies and 

(17)RMS =

√√√√ 1

N

N∑

i=1

(
�cal − �ref

�ref

)2
cross-section libraries for predicting fluence rates in RPVs 
because it has a very clean structural geometry represent-
ing standard PWR pressure vessel conditions [32]. Figure 8 
illustrates the geometric configuration and material distribu-
tion of the VENUS-3 facility. The VENUS-3 model includes 
two types of fuel rods: the PLSA, core baffle, water reflector, 
barrel, Pyrex control rods, barrel, neutron pad, three types 
of grids, bottom support, reactor vessel, and jacket inner 
walls. Detailed descriptions and qualifications were obtained 
from the benchmark document. The benchmark arranges 386 
dosimeters, with 244 58Ni(n, p)58Co dosimeters, 104 115In(n, 
n’)115mIn dosimeters, and 38 27Al(n, a)24Na dosimeters 
placed in 268 different spatial locations. The experimental 
rate sets are provided as a ratio of the calculated reaction rate 
to the average dosimeter cross section, named the equivalent 
fission flux.

The numerical results shown in Fig. 9 were modeled and 
simulated using the  PNTN-S8 angular discretization, 199 
KASHIL-E70 neutron groups multigroup cross sections 
[33], and 407,819 tetrahedral elements. Figure 10 shows 
a C/E comparison of the equivalent fission fluxes at the 
three detector positions. For the 115In(n, n’)115mIn dosim-
eters, almost all the equivalent fission flux deviations are 
included within ± 10%, except for a detector position (No. 
31 located in the core barrel with 0.7° angle) where the 
equivalent fission flux numerical value is affected by reflec-
tive boundary. For the 27Al(n, a)24Na dosimeters, 92% of the 
equivalent fission flux deviations were within ± 10%, and the 
remaining three dosimeters overestimated the correspond-
ing experimental values by approximately 11.9%. For the 
58Ni(n, p)58Co dosimeters, 95% of the equivalent fission flux 
deviations are limited within ± 10%, except for 11 detector 
positions where the equivalent fission flux numerical val-
ues overestimated the corresponding experimental values by 
about 10.1%–20.7%. They are concentrated at the junction 
of the PLSA region, outer baffle, and core barrel. The scalar 
flux distribution is not smooth because of the strong spatial 

Fig. 9  (Color online) Mesh dis-
tribution and fast neutron fluxes 
of the VENUS-3
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Fig. 10  C/E comparison of equivalent fission fluxes at detector positions: a 58Ni(n,p)58Co from No. 1 to 139; b 58Ni(n,p)58Co from No. 140 to 
244; c 115In(n,n’)115mIn; d 27Al(n,a)24Na

Fig. 11  Speedup ratio with the change in the a order of quadrature sets; b order of Legendre expansion
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nonuniformity of the geometry model, and higher require-
ments are proposed for local mesh refinement, which sig-
nificantly degrades the simulated accuracy of these regions. 
The overall agreement between the numerical results from 
the ThorSNIPE code and the experimental results was very 
good, which shows that the ThorSNIPE code is highly reli-
able and stable for complex shielding calculations.

The numerical results [32] from TORT-3.2 with 
1,004,295 hexahedral grids and 26 BUGLE-96 neutron 
energy groups were selected as comparative references. 
For the uniformly distributed 3.3% fuel regions, TORT-3.2 
with hexahedral structured meshes achieved better results. 
The ThorSNIPE code with tetrahedral unstructured meshes 
can decrease the numerical oscillation for complex regions. 
For the 27Al(n, a)24Na dosimeters, the numerical results of 
ThorSNIPE tended to be lower than those of TORT-3.2 
in the core barrel. This underestimation might have been 
caused by an error in the average dosimeter cross section.

In Fig. 11, the speedup ratios of the three quadrature sets 
with the  P3 Legendre expansion order and the four Legendre 
expansion orders with  PNTN-S8 angular discretization are 
shown. The test conditions were consistent with TORT-
3.2 code. Overall, the behavior of the proposed algorithm 
was similar to that of the Kobayashi-3i benchmark. For 
 PNTN-S12, the acceleration ratio was 6.47 with 407,819 ele-
ments. Comparing the results of different expansion orders, 
the  P5 expansion order has the steepest upward trend, and 
the maximum speedup ratio achieved was 6.98. The numeri-
cal results indicate that the proposed algorithm achieves a 
favorable speedup ratio as the scale of the mesh increases, 
as expected.

4  Conclusion

In this study, a multithreaded parallel upwind algorithm to 
solve the first-order Boltzmann neutron equation is proposed 
and implemented in the multigroup 2D/3D  SN transport code 
ThorSNIPE. The cell-based upwind sweep algorithm real-
izes angular flux transmission between neighboring meshes 
and achieves a stable solution by applying DGFEM spatial 
discretization. The multithread parallel strategy automati-
cally manages the angular sweep stack of each thread and 
improves the quality and efficiency of the ThorSNIPE code.

The performance and accuracy of the proposed algorithm 
were tested using several typical benchmark problems. In the 
IAEA benchmark, the upwind sweep algorithm was proven 
to be the optimal method for DGFEM calculations and can 
save significant computational costs. The results show that 
the ThorSNIPE code agrees well with the reference, with a 
deviation of 1 pcm in eigenvalue and within 2.50% for flux 
distribution. In the Kobayashi-3i benchmark, the results for 
angular flux simulations over the full domain in different 

mesh sizes and quadrature set orders indicate that the mul-
tithreaded parallel algorithm has potential extensibility. In 
the VENUS-3 benchmark, 96% of the equivalent fission flux 
deviations are limited within ± 10%, except for 15 detector 
positions where the equivalent fission flux numerical val-
ues overestimated the corresponding experimental values 
by about 10.1%–20.7%. The maximum speedup ratio was 
6.98 with 407,819 elements. The results of the VENUS-3 
benchmark show that this robust algorithm can play a reli-
able role in practical engineering applications and improve 
computational efficiency.

In the future, angular and algebraic multigrid methods 
planned to solve discretized equations to overcome the 
reduced convergence speed of the iteration method will be 
investigated. Furthermore, we plan to address more com-
plex problems to assess the accuracy and effectiveness of 
the proposed method and present a rigorous mathematical 
convergence analysis of the new scheme.
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